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6 () The gradient

To understand how Maxwell’s Equations lead to the wave equation, it is
necessary to comprehend a third differential operation used in vector
calculus — the gradient. Similar to the divergence and the curl, the gradient
involves partial derivatives taken in three orthogonal directions. However,
whereas the divergence measures the tendency of a vector field to flow
away from a point and the curl indicates the circulation of a vector field
around a point, the gradient applies to scalar fields. Unlike a vector field, a
scalar field is specified entirely by its magnitude at various locations: one
example of a scalar field is the height of terrain above sea level.

What does the gradient tell you about a scalar field? Two important
things: the magnitude of the gradient indicates how quickly the field is
changing over space, and the direction of the gradient indicates the dir-
ection in that the field is changing most quickly with distance.

Therefore, although the gradient operates on a scalar field, the result of
the gradient operation is a vector, with both magnitude and direction. Thus,
if the scalar field represents terrain height, the magnitude of the gradient at
any location tells you how steeply the ground is sloped at that location, and
the direction of the gradient points uphill along the steepest slope.

The definition of the gradient of the scalar field y is
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Thus, the x-component of the gradient of w indicates the slope of the
scalar field in the x-direction, the y-component indicates the slope in the
y-direction, and the z-component indicates the slope in the z-direction.
The square root of the sum of the squares of these components provides
the total steepness of the slope at the location at which the gradient is
taken.
In cylindrical and spherical coordinates, the gradient is
oy 10y  Ow

vy = L or T Y lindri .
Vy =7 o —|—<,or 20 +z 2 (cylindrical) (5.4)

and

oy 1wy 1 Oy
"or ;-5-6_'+(Prsin9340

(spherical). (5.5)



120 A student’s guide to Maxwell’s Equations

=

V, VO, V X|Some useful identities

Here is a quick review of the del differential operator and its three uses
relevant to Maxwell’s Equations:

Del:

Del (nabla) represents a multipurpose differential operator that can
operate on scalar or vector fields and produce scalar or vector results.

Gradient:
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The gradient operates on a scalar field and produces a vector result
that indicates the rate of spatial change of the field at a point and the
direction of steepest increase from that point.

Divergence:
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The divergence operates on a vector field and produces a scalar result
that indicates the tendency of the field to flow away from a point.

Curl:
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The curl operates on a vector field and produces a vector result that
indicates the tendency of the field to circulate around a point and the
direction of the axis of greatest circulation,
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Once you’re comfortable with the meaning of each of these operators,
you should be aware of several useful relations between them (note that
the following relations apply to fields that are continuous and that have
continuous derivatives).

The curl of the gradient of any scalar field is zero.

Vx V=0, (5.6)

which you may readily verify by taking the appropriate derivatives.

Another useful relation involves the divergence of the gradient of a
scalar field; this is called the Laplacian of the field:
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The usefulness of these relations can be illustrated by applying them to
the electric field as described by Maxwell’s Equations. Consider, for
example, the fact that the curl of the electrostatic field is zero (since
electric field lines diverge from positive charge and converge upon
negative charge, but do not circulate back upon themselves). Equation 5.6
indicates that as a curl-free (irrotational) field, the electrostatic field E
may be treated as the gradient of another quantity called the scalar
potential V;

E=—-9V, (5.8)

where the minus sign is needed because the gradient points toward the
greatest increase in the scalar field, and by convention the electric force
on a positive charge is toward lower potential. Now apply the differential
form of Gauss’s law for electric fields:
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which, combined with Equation 5.8, gives
= i, (5.9)
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This is called Laplace’s equation, and it is often the best way to find the
electrostatic field when you are not able to construct a special Gaussian
surface. In such cases, it may be possible to solve Laplace’s Equation for
the electric potential V and then determine E by taking the gradient of the
potential,
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Here is a summary of the integral and differential forms of all of
Maxwell’s Equations in matter:

Gauss’s law for electric fields:

f Do da = gee, enc (integral form),
s

VoD=pg, (differential form).

Gauss’s law for magnetic fields:

j{fi’ ofida=0 (integral form),
§

VoB=0 (differential form).

Faraday’s law:

fﬁ odl = ﬁif Boiida  (integral form),
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VXE=— %—f (differential form).

Ampere-Maxwell law:
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¢ Divergence theorem

Extending
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from differential volume Av to a volume integral,

/ V- Edv = ‘% E-ds (divergence theorem) (141)
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which is known as the divergence theorem . The closed surface in
the integral on the right is the surface that bounds the volume that
is integrated over on the left.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby ct al) for ECE331, 'SU.
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e Vector identities involving curl

(1) Vx(A+B)=VxA+VxB (149)
(2) V- (VxA)=0 forany vector A (150)
(3) Vx(VV)=0 for any scalar function V. (151)

e Stoke’s theorem

Using this theorem we can convert the surface integral of the curl of
a vector over an open surface S into a line integral of the vector along
the contour C' bounding the surface S.

/(V x B) ds = f B-dl (Stokes’s theorem) (152)
S
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If V x B = 0 the field is said to be conservative or irrotational

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



