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5. Magnetostatics
For magnetostatics, we will build on our knowledge of electrostatics
and explore some analogies between two.

Recall Maxwell’s equations, obtained for steady-state,

∇ ·B = 0, ∇×H = J (1)

where J is current density , B is magnetic flux density , and H is

magnetic field intensity . They are related by

B = µH (2)

For simplicity, assume that µ is scalar, linear and isotropic. For most
dielectrics and metals µ = µ0.

Table 5.1 in textbook has various relationships in electro- and
magneto-statics cases.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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5.1. Magnetic forces and torques

We’ve seen the relationship between electric field E and electric force
Fe(what is it?). Magnetic flux density B is defined at a point in space
as the magnetic force F that would be exerted on a charged particle
moving with a velocity u at that point. This relationship is described
by

Fm = qu×B (N) (3)

• What is the unit for B? Additional unit introduced for B ⇒
Tesla.

• For a positive charge⇒ force in the direction of u×B (which is
where?); for a negative charge - opposite direction. Remember
the right-hand rule for cross products. see Fig. 1.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 1: Direction of the magnetic force on a charged particle is: (a)
perpendicular to both B and u, and (b) depends on charge polarity.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• The magnitude of the force is given by,

Fm = quB sin θ (4)

where θ is angle between u and B. What is the maximum and
minimum?

• What if both E and B are present? Then we get both, elec-
tromagnetic force

F = Fe + Fm = qE + qu×B = q(E + u×B) (5)

This is known as the Lorentz force .

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• What are the differences between these two forces?

1. Fe is always in direction of electric field, but Fm is always
perpendicular to the magnetic field

2. Fm acts only on a moving charged particle; Fe doesn’t care.

3. Fe expends energy in displacing a charged particle; Fm

does no work, even though the particle is displaced.

• Remember that Fm is perpendicular to u ⇒ F · u =?.

• The resulting work done when the particle is displaced along
dl = udt

dW = Fm · dl = (Fm · u) dt = 0 (6)

• Important: no work is done⇒ the magnetic field cannot change
kinetic energy of a charged particle, but it can change the di-
rection!

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnetic force on a current-carrying conductor

We can look at not just an isolated charged particle in motion, but
also at a continuous flow e.g., current flowing through a wire. From
above, if a current carrying wire is placed in a magnetic field, a force
will act on the wire. Check Fig. 2 for the arrangement.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• For zero current - nothing happens and wire is vertical.

• For current flowing upward there is deflection in −y direction.

• For current flowing downward the deflection is in y direction.

• Can we quantify this? Recall that Fm = qu×B requires veloc-
ity u, and we have current I.

• Take a small segment of the wire with cross-section of A and
differential length dl where direction of dl is in the direction of
the current I.

• Only dealing with electrons (conductor)⇒ charge density ρve =
−Nee where Ne is the number of moving electrons per unit vol-
ume.

• The total amount of moving charge

dQ = ρveAdl = −NeeAdl (7)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-2

Figure 2: Wire in a magnetic field directed into the page: (a) no
deflection when current through wire is zero, (b) deflection to the left
when I is upward, and (c) deflection to the right when I is downward.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• The magnetic force acts on this charge

dFm = dQue ×B = −NeeAdlue ×B (8)

• Note that the electron current flows in the direction opposite to
the direction of their velocity, so that dlue = −dlue and

dFm = NeeAue dl×B (9)

• How is the current calculated? We have the density, volume and
velocity ⇒ I = ρve(−ue)A = (−Nee)(−ue)A = NeeAue ⇒

dFm = I dl×B (N) (10)

• If current I is flowing on a closed contour C, the total magnetic
force becomes

Fm = I

∮
C

dl×B (N) (11)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Closed Circuit in a Uniform B Field

Check out Fig. 3; B is uniform and constant ⇒ take it out of inte-
gration

Fm = I

(∮
C

dl

)
×B = 0 (12)

which is statement of a geometrical fact that integral of dl over a
closed path adds up to zero ⇒ total magnetic force on any closed
current loop in a uniform magnetic field is zero.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 3: In a uniform B, (a) net force on a closed current loop is
zero, and (b) force on a line segment is proportional to the vector
between the end points (Fm = I`×B).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Curved Wire in a Uniform B Field

Replacing the closed loop with wire segment in Fig. 3 and integrating
gives:

Fm = I

(∫ b

a

dl

)
×B = I`×B (13)

where l is a vector directed from a to b. Integration along any path
depends only on the start and final points, so use the simplest!

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4: Semicircular conductor in a uniform field (Example 5-1).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnetic torque on a current-carrying loop

Application of force on a rigid body that is pivoted about a fixed axis
produces rotation about that axis. The “strength” of this rotation
depends on the cross product of applied force F and the distance
vector d which is measured from a point on the rotation axis to the
point of application of force, as shown in Fig. 5.

T = d× F (N·m) (14)

where T is torque and d is moment arm.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5: The force F acting on a circular disk pivoted along the
z -axis generates a torque T = d× F that causes the disk to rotate.

• Note that torque does not represent energy or work.

• For example in Fig. 5 the force lies in the x− y plane and has
angle θ with d ⇒

T = ẑr F sin θ (15)

where |d| = r.

• Torque along +z corresponds to rotation in CCW direction.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Torque along −z corresponds to rotation in CW direction.

• right-hand rule: thumb pointing along the direction of torque
⇒ four fingers indicate direction in which torque is trying to
rotate the body.

• Magnetic force, or magnetic flux density B, can also produce
torque.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Magnetic field in the plane of the loop

Start with Fig. 6: a rectangular conducting loop is made of rigid wire
carrying current I. The pivot axis is shown and the loop lies in x− y
plane. The magnetic field (flux density) B = x̂B0.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Divide the analysis into different sections of the loop. Take arms
1 and 3 first:

F1 = I(−ŷb)× (x̂B0) = ẑIbB0 (16)

F3 = I(ŷb)× (x̂B0) = −ẑIbB0 (17)

where we’ve used Fm = I`×B.

• What about arms 2 and 4? They are parallel to B ⇒ 0 force.

• Fig. 6 shows the forces and moment arms; where are the torques?
What kind of rotation will this produce?

• What’s the total torque? Add the two together; note that mo-
ment arms are the same in magnitude but opposite in direction:

T = d1 × F1 + d3 × F3

=
(
−x̂

a

2

)
× (ẑIbB0) +

(
x̂
a

2

)
× (−ẑIbB0)

= ŷIabB0 = ŷIAB0 (18)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 6: Rectangular loop pivoted along the y-axis; (a) front view
and (b) bottom view. The combination of forces F1 and F3 on the
loop generates a torque that tends to rotate the loop in a clockwise
direction as shown in (b).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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where A = ab is area of the loop.

• Note that this result is valid only when B is parallel to the plane
of the loop. Once the loop starts rotation⇒T starts decreasing.

• What happens when they are perpendicular?

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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B perpendicular to the axis of a rectangular loop

This setup is shown in Fig. 7 where B = x̂B0 is perpendicular to
the axis of rotation but may be at an angle with the loop’s surface
normal n̂.

• Forces on arms 2 and 4 are non-zero, but what about their
direction? ⇒ net effect is zero force along the axis of rotation
⇒ torque also zero.

• Direction of currents in arms 1 and 3 is always perpendicular to
B regardless of the angle θ ⇒ forces will have the same expres-
sions as before (F1 = ẑIbB0 and F3 = −ẑIbB0).

• What is different is that the cross product between the moment
arm and force will have a sin θ term, as shown in Fig. 7.

• Magnitude of the net torque is the same as before, (T = ŷIAB0)
but with sin θ:

T = IAB0 sin θ (19)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 7: Rectangular loop in a uniform B whose direction is perpen-
dicular to the rotation axis of the loop, but makes an angle θ with
the loop’s surface normal n̂.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Where are the maxima and minima of this torque?

• If there are N loops (turns), then the total torque is obtained
by multiplication:

T = NIAB0 sin θ (20)

• NIA is called magnetic moment m of the loop and can be
viewed as a vector m with direction n̂ (surface normal).

• n̂ follows another right-hand rule: when the four fingers point in
the direction of the current around the loop, the thumbs gives
the direction of n̂.

• This gives magnetic moment:

m , n̂NIA (A·m2) (21)

• The torque can now be expressed as,

T = m×B (N·m) (22)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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which is valid in general, not just for this orientation of B and
this loop.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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5.2. Biot-Savart Law

Let’s look at a different problem: what is the magnetic field generated
by a current? Also, we’ll switch to magnetic field intensity H instead
of magnetic flux density B; remember that B = µH.

• An initial observation was made by Oersted: the deflection of
compass needles by current flow in wires.

• Follow on: Jean Biot and Felix Savart derived expression relat-
ing H at any point in space to the current I that generates it
⇒ Biot-Savart law :

dH =
I

4π

dl× R̂

R2
(A/m) (23)

where dH is generated by I flowing through differential length
dl. Vector R = R̂R is a distance vector between dl and the
point of interest P (see Fig. 8).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-8Figure 8: Magnetic field dH generated by current element I dl. The
direction of the field induced at point P is opposite that induced at
point P ’.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• What is the SI unit of H? Amps/meter (A/m)

• Remember the reference directions: dl is in the direction of I
and R̂ is from current element to P .

• Similarity as we had with E induced by charge: the fall-off goes
as 1

R2 .

• The difference: E is in the direction of the distance vector R,
while H is orthogonal to the plane defined by dl and R.

• The direction of H is given in Fig. 8; note that at “opposite”
points, field is in the opposite direction.

• This gives us the differential value of H at point P ; what’s the
total value? ⇒ sum up the contributions, i.e. integrate:

H =
I

4π

∫
l

dl× R̂

R2
(A/m) (24)

where integration is along the path l where current I flows.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnetic field due to current distributions

So far, we looked at a simple case of current in a wire. What happens if
there is some distribution, volume or surface, of the current density?

• Surface current density shows up in cases where current flows
in sheets of near-zero thickness. Fig. 9 shows two cases.

• Integrating volume current density (measured in A/m2) over
conductor surface gives the total current, i.e.

I =

∫
S

J · ds (25)

• Integrating surface current density (in A/m) over the conductor
length gives total current,

I =

∫
l

Jsdl (26)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Magnetostatics 31

(a)  Volume current density J in (A/m2)

(b)  Surface current density Js in (A/m)

J

S

Js

l

Figure 5-9

Figure 9: (a) The total current crossing the cross section S of the
cylinder is I =

∫
S

J · ds. (b) The total current flowing across the
surface of the conductor is I =

∫
l
JS dl.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Note that the names are a bit confusing, but for our purpose
here we can see that

I dl = Js ds = J dv (27)

• Final result for Biot-Savart law:

H =
1

4π

∫
S

Js × R̂

R2
ds (for a surface current) (28)

H =
1

4π

∫
v

J× R̂

R2
dv (for a volume current) (29)

• Example 5-2: Magnetic field of a linear conductor

H =
I

4π

∫ z=l/2

z=−l/2

dl× R̂

R2
= φ̂

I

4π

∫ l/2

−l/2

sin θ

R2
dz (30)

Variable substitution (transformation)

R = r csc θ, z = −r cot θ, dz = r csc2 θ dθ (31)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 10: Linear conductor of length l carrying a current I. (a) dH
at point P due to current element dl. (b) Limiting angles θ1 and θ2.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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H = φ̂
I

4π

∫ θ2

θ1

sin θ r csc2 θ dθ

r2 csc2 θ
= φ̂

I

4πr

∫ θ2

θ1

sin θ dθ

= φ̂
I

4πr
(cos θ1 − cos θ2) (32)

cos θ1 =
l/2√

r2 + (l/2)2
(33)

cos θ2 = − cos θ1 =
−l/2√

r2 + (l/2)2
(34)

B = µ0H = φ̂
µ0Il

2πr
√

4r2 + l2
(T) (35)

B = φ̂
µ0I

2πr
(infinitely long wire) (36)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Example 5-4: Magnetic field of a circular loop

dH =
I

4πR2
|dl× R̂| = I dl

4π(a2 + z2)
(37)

dH = ẑ dHz = ẑ dH cos θ = ẑ
I cos θ

4π(a2 + z2)
dl (38)

H = ẑ
I cos θ

4π(a2 + z2)

∮
dl = ẑ

I cos θ

4π(a2 + z2)
(2πa) (39)

H = ẑ
Ia2

2(a2 + z2)3/2
(A/m) (40)

H = ẑ
I

2a
(at z = 0) (41)

H = ẑ
Ia2

2|z|3
(at |z| � a) (42)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 11: Circular loop carrying a current I (Example 5-4).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnetic field of a magnetic dipole

Let’s extend the analogy with the electric field by examining a mag-
netic dipole. The magnetic moment of a single current loop was in-
troduced in m , n̂NIA (A·m2) .

• The loop is in the x− y plane, as shown in Fig. 11.

• The magnetic moment of a current loop is in the z direction and

has magnitude m = Iπa2 (why?) so that, H = ẑ Ia2

2|z|3 (eq. 5.36

in book) becomes:

H = ẑ
m

2π|z|3
(at |z| � a) (43)

which is OK if P is far away from the loop.

• For the same problem, but set up in spherical coordinates and
distant point P ′ we get

H =
m

4πR′3
(R̂2 cos θ′ + θ̂ sin θ′) (44)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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with condition R′ � a.

• Such current loop with dimensions much smaller than R is called
magnetic dipole.

• Rationale: magnetic field pattern looks similar to the pattern
of electric dipole field — see Fig. 12

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-13Figure 12: Field lines: (a) electric dipole, (b) magnetic dipole, and (c)
bar magnet. Far away from the sources, the field patterns are similar.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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5.3. Magnetic force between parallel conductors

In the previous examples we looked at current carrying wires in a
constant magnetic field. But, the Biot-Savart law tells us that there
is magnetic field due to current flow itself ⇒ a current carrying wire
can exert force on another current carrying wire.

• Consider two very long wires, parallel to each other, as in Fig. 13,
separated by d, carrying currents I1, I2 in the same direction.

• The coordinate system origin is set up in the middle with axis
arrangement as shown.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-14
Figure 13: Magnetic forces on parallel current-carrying conductors.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Denote B1 as the magnetic field due to current I1 at the location
of the second wire (I2), and vice versa.

• Use B = φ̂µ0I
2πr (note: I = I1, r = d, φ̂ = −x̂) to find B1 ⇒

B1 = −x̂
µ0I1
2πd

(45)

• How do we find the force? Integrate along the length l along
the line:

Fm = I

(∫ b

a

dl

)
×B = I`×B (46)

F2 = I2lẑ×B1 = I2lẑ× (−x̂)
µ0I1
2πd

= −ŷ
µ0I1I2l

2πd
(47)

• or, to get force per unit length

F′2 =
F2

l
= −ŷ

µ0I1I2
2πd

(48)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Completely analogous analysis leads to

F′1 = ŷ
µ0I1I2

2πd
(49)

i.e. F′1 = −F′2 ⇒ the wires attract each other with equal forces.

• What happens if currents are in opposite directions?

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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5.4. Maxwell’s Magnetostatic Equations

In this section we will look into two of Maxwell’s equations, Gauss’s
law for magnetism and Ampere’s law.

• Gauss’s law for magnetism

Recall, in chapter 4 the discussion of Gauss’s law:

∇ ·D = ρv ⇐⇒
∮
S

D · ds = Q (50)

Differential and integral form are equivalent and are obtained via
divergence theorem which can be applied in general.

• Interpretation: the total charge inside the surface S is deter-
mined by the surface integral of D · ds.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Problem: magnetic poles come only in pairs! ⇒ Gauss’s law
for magnetism becomes

∇ ·B = 0⇐⇒
∮
S

B · ds = 0 (51)

• Interpretation: the electric field lines originate and terminate
on charges; magnetic field lines form closed loops ! See fig. 14.

• If there is some net charge inside the surface there are some lines
that have to terminate on charges outside the volume. However,
equal “amounts” of magnetic lines leave as enter the surface,
explaining eq. 51.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-15Figure 14: Whereas (a) the net electric flux through a closed surface
surrounding a charge is not zero, (b) the net magnetic flux through a
closed surface surrounding one of the poles of a magnet is zero.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Ampere’s law

Next, we look at another of Maxwell’s equation for magnetostatics,
Ampere’s law:

∇×H = J (52)

the integral form requires a bit of work:

• Integrate both sides over an open surface S,∫
S

(∇×H) · ds =

∫
S

J · ds (53)

• Recognize that the right side is just the current I

• Then use Stoke’s theorem:∫
S

(∇×H) · ds =

∮
C

H · dl (Stokes’s theorem) (54)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• To get, ∮
C

H · dl = I (Ampère’s law) (55)

where C is closed contour bounding the surface S and I =
∫

J·ds
is the current flowing through S.

• The direction of C is such that I and H satisfy the right-hand
rule that was discussed in the Biot-Savart law.

• Ampere’s circuital law: the line integral of H around a closed
path is equal to the current traversing the surface bounded by
that path.

• Several cases illustrated in Fig. 15. Note that the shape of the
contour has no effect on the final result.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-16

Figure 15: Illustration of Ampère’s law: line integral of H around
a closed contour C is equal to the current traversing the surface
bounded by the contour.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Example 5-5: Magnetic field of a long wire

H1 = φ̂H1 = φ̂
r1

2πa2
I (for r1 ≤ a) (56)

H2 = φ̂H2 = φ̂
I

2πr2
(for r2 ≥ a) (57)

• Example 5-6: Magnetic field inside a toroidal coil

H = −φ̂H = −φ̂ NI
2πr

(for a < r < b) (58)

• Example 5-7: Magnetic field of an infinite current sheet

H =

{
−ŷ Js

2 , for z > 0,

ŷ Js

2 , for z < 0.
(59)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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(a)  Cylindrical wire
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Figure 5-17

Figure 16: Infinitely long wire of radius a carrying a uniform current
I along the +z -direction: (a) general configuration showing contours
C1 and C2; (b) cross-sectional view; and (c) a plot of H versus r
(Example 5-5).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-18

Figure 17: Toroidal coil with inner radius a and outer radius b. (Ex-
ample 5-6).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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w

H

H

Js (out of paper)

Figure 5-19Figure 18: A thin current sheet in the x-y plane carrying a surface
current density Js = x̂Js (out of the page) (Example 5-7).

5.5. Vector magnetic potential

Let’s build on our experience with the electric field and potential:
E = −∇V . This is used to find electric field if potential is known,
which can be simpler than dealing with electric field directly. How
about magnetic flux density B?

• We know from before that ∇ · B = 0 so we want to find the
magnetic potential that will guarantee this.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• We also know that ∇ · (∇×A) = 0 (for any vector) ⇒ defining

vector magnetic potential A

B = ∇×A (Wb/m2) (60)

guarantees the above condition.

• Units? Even though tesla (T) is SI unit for B, another one is
used: Wb/m2 ⇒ A = Wb/m.

• Magnetic vector potential can be used to re-write some equa-
tions, e.g. Ampere’s law (eq. 52)

∇×B = µJ⇒ ∇× (∇×A) = µJ (61)

• Recall that

∇2A = ∇(∇ ·A)−∇× (∇×A) (62)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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and

∇2A =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
A

= x̂∇2Ax + ŷ∇2Ay + ẑ∇2Az (63)

• Combining eqs. 61 and 62 gives

∇(∇ ·A)−∇2A = µJ (64)

• This can be simplified even further since we have a choice of
functional form for ∇ ·A ⇒ make it zero!

• Finally, we get the vector Poisson’s equation

∇2A = −µJ (65)

which can be broken down into three scalar Poisson’s equations:

∇2Ax = −µJx, ∇2Ay = −µJy, ∇2Az = −µJz (66)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• In electrostatics the solution to Poisson’s equation

∇2V = −ρv
ε

is V =
1

4πε

∫
v ′

ρv
R′

dv′ (67)

• For magnetostatics similar solution, but instead of ρ/ε we have
µJ :

Ax =
µ

4π

∫
v ′

Jx
R′

dv′ (Wb/m) (68)

and similarly for other components.

• Putting it all together into one vector equation:

A =
µ

4π

∫
v ′

J

R′
dv′ (Wb/m) (69)

• If surface (or line) current density is known, then integration is
over a surface S′ (line l′).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Solutions via: Ampere’s law, Biot-Savart law or magnetic po-
tential; whichever is the easiest to use.

Introduce another quantity: magnetic flux Φ. Defined as total
magnetic flux density passing through surface S:

Φ =

∫
S

B · ds (Wb) (70)

Use magnetic potential B = ∇×A and Stoke’s theorem to get,

Φ =

∫
S

(∇×A) · ds =

∮
C

A · dl (Wb) (71)

where C is the contour bounding the surface S.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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5.6. Magnetic properties of materials

We’ll use a classical picture of the atom to discuss magnetic properties.
Recall that a loop carrying current generates magnetic field profile
similar to permanent magnet ⇒ magnetic moment m = IA. There
are two sources of magnetization in a material:

1. Orbital motions of electrons around the nucleus (and protons in
nucleus)

2. Electron spin

Magnetic behavior is governed by interaction between magnetic dipole
moments and external magnetic field. Materials are classified as:

1. diamagnetic — have no permanent magnetic dipole moments

2. paramagnetic — have dipole moments

3. ferromagnetic — have dipole moments (but different structure
from paramagnetic)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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r
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e

mo
ms

(a)  Orbiting electron (b)  Spinning electron

Figure 5-20Figure 19: An electron generates (a) an orbital magnetic moment mo

as it rotates around the nucleus and (b) a spin magnetic moment ms,
as it spins about its own axis.

• Orbital and spin magnetic moments

The general idea is given in Fig. 19:

• An electron orbiting with constant velocity and period T =
2πr/u produces current,

I = − e
T

= − eu

2πr
(72)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• This results in orbital magnetic moment m0

mo = IA =
(
− eu

2πr

)
(πr2) = −eur

2
= −

(
e

2me

)
Le (73)

where Le = meur is the angular momentum.

• Quantum physics modifies this picture: Le is quantized, Le =
0, ~, 2~ . . .. (where ~ = h/2π and h is Planck’s constant)

• ⇒ there is a minimum (non-zero) orbital magnetic moment

mo = − e~
2me

(74)

• Most materials are nonmagnetic. Atoms are oriented randomly
so that magnetic moments of electrons add up to zero or small
value.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• What about the spin? Electron generates its own spin mag-
netic moment ms (Fig. 19). From quantum theory

ms = − e~
2me

(75)

which is the same as minimum orbital magnetic moment.

• For spin magnetic moment to show up we need odd number
of electrons per atom. (They pair up in opposite directions so
cancel if even.)

• Due to higher mass of the nucleus, it has much lower magnetic
moment.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnetic Permeability

Start by defining magnetization vector M as vector sum of all mag-
netic dipole moments.

• To get the total magnetic flux density inside the material, we
have to add internal to external component:

B = µ0H + µ0M = µ0(H + M) (76)

• Magnetization happens in response to the external field (in anal-
ogy with electric field case), so that

M = χmH (77)

where χm is magnetic susceptibility of the material.

• Diamagnetic and paramagnetic materials have constant χm but
not ferromagnetic ones.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Express everything on RHS in terms of H:

B = µ0(H + χmH) = µ0(1 + χm)H (78)

• Use just one const. on RHS: magnetic permeability µ

B = µH, where µ = µ0(1 + χm) (H/m) (79)

• Define relative permeability

µr =
µ

µ0
= 1 + χm (80)

where µ0 is permeability of free space.

• Table 5-2 for classification of materials; based on value of χm.

• Most metals and dielectric materials have µr ≈ 1 (or µ = µ0)

• Ferromagnetic materials have very large µr

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnetic hysteresis of ferromagnetic materials

Special materials: iron, nickel, cobalt. Their magnetic moments align
“easily” with external magnetic field. In addition, they retain their
magnetization even after the external field is removed! Here is their
qualitative description.

• Magnetized domains are essential feature of ferromagnetic ma-
terials, and are illustrated in Fig. 20. Within each (microscopic)
domain moments of all its atoms are aligned.

• Without an external field, each domain’s field orientation is ran-
dom so that the net magnetization is zero.

• Under the influence of external field, domain magnetization will
align (partially) with it (Fig. 20).

• Magnetization curve describes behavior of ferromangetics un-
der an external field H. It shows values of internal magnetic flux
density B for a given H.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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B

(a)  Unmagnetized domains

(b)  Magnetized domains

Figure 5-21

Figure 20: Comparison of (a) unmagnetized and (b) magnetized do-
mains in a ferromagnetic material.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-22

Figure 21: Typical hysteresis curve for a ferromagnetic material.

• Typical magnetization curve shown in Fig. 21. How do we
explain it?

• Start with unmagnetized material (origin). As H increases, so
does B (linearly?), until we start entering saturation.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• At point A1 we reverse the process and start decreasing H.
Interestingly, this does not follow the same curve as on the way
“up.” Even for zero H there is some residual flux density
Br. At this point material is magnetized and can be used as
permanent magnet.

• Further increase in the opposite direction of H first leads to zero
internal field and then to saturation at A4.

• From A4 reduction to zero still leaves some residual magneti-
zation (but opposite to the one before). Finally, we reach A1

saturation point.

• This characteristics is called magnetic hysteresis . Relationship
between H and B is not unique and also depends on “history”
of magnetization.

• Distinguish hard and soft ferromagnetic materials, shown in
Fig. 22. Hard ones have wide hysteresis loop while soft ones

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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(a)  Hard material (b)  Soft material

Figure 5-23

Figure 22: Hysteresis curves for (a) hard, and (b) soft ferromagnetic
material.

have narrow loop. Hard ones are used for permanent magnets,
while soft ones are easier to magnetize/demagnetize.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-24
Figure 23: Boundary between medium 1 with µ1 and medium 2 with
µ2.

5.7. Magnetic boundary conditions

We’ll build on the foundation established for electrostatic boundary
conditions. Figure 23 shows the boundary. First recall the Gauss’s
law at boundary ∮

S

D · ds = Q =⇒ D1n −D2n = ρs (81)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• We have Gauss’s law for magnetism (eq. 51) which produces∮
S

B · ds = 0 =⇒ B1n = B2n (82)

i.e. normal component of B is continuous across the
boundary between two adjacent media. This can be ex-
tended to magnetic field intensity:

µ1H1n = µ2H2n (83)

• Difference: B is continuous across the boundary, but D is not,
unless ρ = 0. What about tangential component?

• Apply Ampere’s law around rectangular path and let ∆h → 0
so that ∮

C

H · dl =

∫ b

a

H2 · dl +

∫ d

c

H1 · dl = I (84)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Notice that along ab and cd segments, tangential H-s are parallel
to dl (what about sign?). As ∆h→ 0, surface becomes a line of
length ∆l. What is the current on this line? I = Js∆l ⇒

H2t ∆l −H1t ∆l = Js ∆l⇒ H2t −H1t = Js (A/m) (85)

• In a general vector form:

n̂2 × (H1 −H2) = Js (86)

where n̂2 is the normal unit vector pointing away from medium
2.

• Surface currents exist only on the surfaces of superconductors
(or perfect conductors). For media with finite conductivities, at
the interface we have Js = 0 and

H1 t = H2t (87)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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(a)  Loosely wound
solenoid

(b)  Tightly wound
solenoid

N

S

Figure 5-25

Figure 24: Magnetic field lines of a) loosely, and b) tightly wound
solenoid.

5.8. Inductance

Electric energy is stored in a capacitor; magnetic energy in an in-
ductor. An example is shown in Fig. 24: solenoid. Cores can be of
different types of materials: air or magnetic with permeability µ. If
wound tightly, the solenoid magnetic field will be similar to that of a
permanent magnet.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnetic field in a solenoid

The goal is to find B inside the solenoid. Figure 25 shows the ar-
rangement.

• Treat the turns as circular loops of radius a, carrying current I.

• From section 5.2.3 we know H along the z axis:

H = ẑ
I ′a2

2(a2 + z2)3/2
(88)

• Look at the dz length of the solenoid: there are ndz turns with
the total current I ′ = Indz ⇒

dB = µdH = ẑ
µnIa2

2(a2 + z2)3/2
dz (89)

• What is needed to get the total B? Some substitutions and
integration . . .

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-26

Figure 25: Solenoid cross section showing geometry for calculating H
at a point P on the solenoid axis.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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B = ẑ
µnIa2

2

∫ θ2

θ1

a sec2 θ dθ

a3 sec3 θ
= ẑ

µnI

2
(sin θ2 − sin θ1) (90)

• Approximation: l� a ⇒ θ1 ≈ −90◦ and θ2 ≈ 90◦ ⇒

B ' ẑµnl =
ẑµNI

l
(long solenoid with l/a� 1) (91)

where N = nl is total number of turns over the length l. Even
though derived just for the midpoint this is approximately valid
everywhere in the interior of the solenoid except near the ends.

Two types of inductance: self-inductance and mutual induc-
tance. Self inductance represents magnetic flux linkage of a coil (or
circuit) with itself, while mutual inductance involves magnetic flux
linkage generated by a current in another coil (or circuit).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Self-inductance

We’ve already seen that the magnetic flux Φ linking a surface S is
given by

Φ =

∫
S

B · ds (Wb) (92)

• How does this work out for solenoid? For a single loop we inte-
grate over the cross-section of the solenoid (loop):

Φ =

∫
S

ẑ

(
µ
N

l
I

)
· ẑ ds = µ

N

l
IS (93)

• Magnetic flux linkage Λ is defined as the total magnetic flux
linking a given circuit or conducting structure.

• For solenoid, total Λ is simply

Λ = NΦ = µ
N2

l
IS (Wb) (94)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Things are a bit different for structures with separate conduc-
tors, as in parallel-wire or coax lines (Fig. 26). There the flux
linkage Λ associated with a length l of line refers to the flux Φ
through the surface between two conductors.

• Note that we’ve assumed zero magnetic field inside the lines.

• Define self-inductance as:

L =
Λ

I
(H) (95)

measured in henry (H) or (Wb/A).

• For a solenoid:

L = µ
N2

l
S (solenoid) (96)

• The two conductor configuration:

L =
Λ

I
=

Φ

I
=

1

I

∫
S

B · ds (97)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-27

Figure 26: To compute the inductance per unit length of a two-
conductor transmission line, we need to determine the magnetic flux
through the area S between the conductors.
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Figure 5-28

Figure 27: Cross-sectional view of coaxial transmission line (Ex. 5-8).

• Example 5-8: Inductance of a coaxial transmission line

Setup shown in Fig. 27. From before (eq. 5.30), current I in the
inner conductor produces:

B = φ̂
µI

2πr
(98)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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B is perpendicular to the surface everywhere:

Φ =

∫
S

B · ds =

∫
S

Bφ · φ̂drdz =

∫ l

0

∫ b

a

B drdz (99)

Φ = l

∫ b

a

B dr = l

∫ b

a

µI

2πr
dr =

µIl

2π
ln

(
b

a

)
(100)

L′ =
L

l
=

Φ

lI
=

µ

2π
ln

(
b

a

)
(101)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-29
Figure 28: Magnetic field lines generated by current I1 in loop 1
linking surface S2 of loop 2.

• Mutual inductance

To describe the magnetic coupling between two circuits, we need mu-
tual inductance. See Fig. 28 for a simple case of two loops.

• Current I1 generates magnetic field B1 which results in a flux

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Φ12 through loop 2:

Φ12 =

∫
S2

B1 · ds (102)

• If loop 2 has N2 turns that all couple to B1 the same way then

Λ12 = N2Φ12 = N2

∫
S2

B1 · ds (103)

• Finding mutual inductance is then easy:

L12 =
Λ12

I1
=
N2

I1

∫
S2

B1 · ds (H) (104)

• The primary use is in transformers (Fig. 3).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 5-30Figure 29: Toroidal coil with two windings used as a transformer.
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5.9. Magnetic Energy

We’ll use a simple approach, using what we know from circuit theory,
i.e. v = Ldi/dt, so that the energy (integral of power) is

Wm =

∫
p dt =

∫
iv dt = L

∫ I

0

i di =
1

2
LI2 (J) (105)

and this is our magnetic energy stored in the inductor.

• We know the inductance of the solenoid (eq. 96) as well as
magnetic flux density inside it (eq. 91) ⇒

Wm =
1

2
LI2 =

1

2

(
µ
N2

l
S

)(
Bl

µN

)2

=
1

2

B2

µ
(lS) =

1

2
µH2v

(106)
where v = lS is the volume of the solenoid and H = B/µ.

• Magnetic energy density wm is above equation per unit volume:

wm =
Wm

v
=

1

2
µH2 (J/m3) (107)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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which is valid for any medium with magnetic field H.

• Use energy density to find the total magnetic energy associated
with H:

Wm =
1

2

∫
v

µH2 dv (J) (108)

• Example 5-9: Magnetic energy in a coax cable

Eq. 98 gives

H =
B

µ
=

I

2πr
(109)

(see fig. 27). Magnetic energy is then

Wm =
1

2

∫
v

µH2dv =
µI2

8π2

∫
v

1

r2
dv (110)

Choose dv to be a cylindrical shell of length l, radius r and thick-

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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ness dr ⇒ dv = 2πrldr

Wm =
µI2

8π2

∫ b

a

1

r2
2πrldr =

µI2l

4π
ln

(
b

a

)
(J) (111)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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