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4. Electrostatics

4.1. Maxwell’s equations

The starting point for our discussion of electromagnetics is Maxwell’s
equations:

∇ ·D = ρv (1)

∇×E = −∂B

∂t
(2)

∇ ·B = 0 (3)

∇×H = J +
∂D

∂t
(4)

where the field quantities are related to each other: D = εE, B = µH.
New quantities introduced: electric charge density ρv, in C/m3 and J
which is current density (A/m2).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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The static case simplifies these expressions, i.e. when charges are
not moving or moving with constant rate ⇒ ρv and J are constant in
time (time-derivatives are zero) ⇒
Electrostatics

∇ ·D = ρv (5)

∇×E = 0 (6)

Magnetostatics

∇ ·B = 0 (7)

∇×H = J (8)

Why is this simpler than the original equations? No time-derivatives
and the electric and magnetic fields are no longer coupled! (Remem-
ber: this is only for static cases). Despite its “simplicity” solutions of
these equations are very useful.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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4.2. Charge and current distributions

If charge is moving ⇒ current flows. Charges can have various distri-
butions: over a volume of space, across a surface or along a line.

• Charge density

If we can neglect the microscopic, discrete, picture, then we talk about
average quantities, such as net charge contained in some volume. If
the volume is small, assume uniform distribution,

• For volume charge density we have

ρv = lim
∆v→0

∆q

∆v
=
dq

dv
(C/m3) (9)

This charge density can vary from point to point, so we talk of
spatial distribution of charge. To get the total charge, integra-

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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tion (summation) is needed:

Q =

∫
v

ρv dv (C) (10)

• Surface charge density - charge distributed over a surface so that

ρs = lim
∆s→0

∆q

∆s
=
dq

ds
(C/m2) (11)

where ∆q is the charge on a small surface element ∆s.

• Line charge density - charge distributed along a line

ρl = lim
∆l→0

∆q

∆l
=
dq

dl
(C/m) (12)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4-1

Figure 1: Charge distributions for Examples 4-1 and 4-2.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Current density

Consider charges moving inside a “tube” (cylinder) in Fig. 2. Charge
moves with average velocity u in the direction indicated. In ∆t they
move ∆l = u∆t.

How many charges cross the cross-section ∆s′ in ∆t?

∆q′ = ρv ∆v = ρv ∆l∆s′ = ρvu∆s′∆t (13)

More generally, flow is not perpendicular to the surface, so we have
to look at the projection of flow onto the surface normal n̂.

∆q = ρvu ·∆s ∆t (14)

From this, finding current is easy

∆I =
∆q

∆t
= ρvu ·∆s = J ·∆s (15)

where

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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q

Figure 4-2Figure 2: Charges with velocity u moving through a cross section ∆s′

in (a) and ∆s in (b).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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J = ρvu (A/m2) (16)

is the current density in A/m2. If J is known, the current is obtained
by integration:

I =

∫
S

J · ds (A) (17)

There are different causes of current flow: namely, convection and
conduction currents. When the charged particles are moving to cause
the current it is a convection current. When the particles themselves
do not move through the space it is a conduction current. For exam-
ple, in a wire the same electrons do not move through the wire from
one end to the other. For our problems, the conduction current will
be more interesting and relevant.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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4.3. Coulomb’s Law

How do we relate the electric field density E (and corresponding elec-
tric flux density D with charge (possibly distributed)?

Statement of Coulomb’s law:

1. An isolated charge q induces an electric field E such that

E = R̂
q

4πεR2
(V/m) (18)

where R̂ is a unit vector pointing from q to a point P (see
Fig. 3). ε is electrical permittivity of the medium.

2. Given the presence of E, the force acting on a test charge q′

introduced at point P is

F = q′E (N) (19)

Note that force is measured in newtons (N), charge in coulombs (C)
and E in N/C (= V/m).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4-3
Figure 3: Electric-field lines due to a charge q.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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The electric field intensity and flux density are related through

D = εE, ε = εrε0 (20)

where ε0 = 8.854× 10−12 (F/m). εr is relative permittivity or dielec-
tric constant.

Two important observations:

• If ε is independent of the magnitude of E then the material is
linear (refers to the fact that D and E relate to each other

linearly)

• If ε is independent of the direction of E ⇒ the material is
isotropic.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Electric field due to multiple point charges

Let’s have a look at what happens when two charges are present as in
Fig. 4 and we are interested in the electric field at point P . We can
apply superposition of the two electric fields. Start with q1 charge at
position R1

E1 =
q1(R−R1)

4πε|R−R1|3
(V/m) (21)

followed by q2 charge at position R2

E2 =
q2(R−R2)

4πε|R−R2|3
(V/m) (22)

Where we have replaced the distance between the point charge q1 and
P with R = |R−R1| and the unit vector R̂ = R−R1

|R−R1| .

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4: The electric field E at P due to two charges is equal to the
vector sum of E1 and E2.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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The geometry is clear on Fig. 4 but the math does not look nice:

E = E1 + E2

=
1

4πε

[
q1(R−R1)

|R−R1|3
+
q2(R−R2)

|R−R2|3

]
(23)

which can then be extended to any number of charges:

E =
1

4πε

N∑
i=1

qi(R−Ri)

|R−Ri|3
(V/m) (24)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Electric field due to a charge distribution

When we have a distribution of charges present it is a bit more com-
plicated. We can use some calculus tricks: restrict the charge to a
small volume dν′ so that the small (differential) charge is dq = ρvdν

′

dE = R̂′
dq

4πεR′2
= R̂′

ρv dv
′

4πεR′2
(25)

which is shown in Fig. 5
To get the total field ⇒ use superposition, i.e. add up the dE, i.e.

integrate

E =

∫
v′
dE =

1

4πε

∫
v′

R̂′
ρv dv

′

R′2
(volume distribution) (26)

Note that both R′ and R̂
′

are functions of position on the integration
volume ν′.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4-5Figure 5: Electric field due to a volume charge distribution.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Extending this to surface and line charge distributions, we get:

E =
1

4πε

∫
S′

R̂′
ρs ds

′

R′2
(surface distribution) (27)

E =
1

4πε

∫
l′

R̂′
ρl dl

′

R′2
(line distribution) (28)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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4.4. Gauss’s Law

Gauss’s law was given before:

∇ ·D = ρv (Gauss’s law) (29)

and this is called the differential form, to indicate spatial derivaties
are used. There is also an integral form of Gauss’s Law and is com-
pletely equivalent; we use the most convenient one. Here is how that
comes about; take the volume integral of both sides of Gauss’s Law
in differential form, ∫

v

∇ ·D dv =

∫
v

ρv dv = Q (30)

where Q is total charge enclosed by ν. Use divergence theorem (eq.
3-98) ∫

v

∇ ·D dv =

∮
S

D · ds (31)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Gaussian surface S
enclosing volume

Total charge
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Figure 4-8

Figure 6: Gauss’s law states that the outward flux of D through a
surface is proportional to the enclosed charge Q.

which by comparison gives∮
S

D · ds = Q (Gauss’s law) (32)

The integral form is illustrated in Fig. 6.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Electrostatics 22

Gaussian surface

q

R

D
ds

R̂

Figure 4-9

Figure 7: Electric field D due to point charge q.

If the electric flux density D is evaluated far away from some
charge contained inside small volume ∆ν, then the charge can be
treated as a point charge. We can use integral form of Gauss’s law
to calculate D for a point charge as illustrated in Fig. 7.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Symmetry dictates that magnitude of D must be the same at all
points on the Gaussian surface S.

⇒ D(R) = R̂DR (33)

(which coordinate system?). Similarly, ds = R̂ds. Apply Gauss’s law
to this electric flux density∮

S

D · ds =

∮
S

R̂DR · R̂ ds =

∮
S

DR ds =

∫ 2π

0

∫ π

0

DRR
2 sin θdθdφ

(34)∮
S

D · ds = DR(4πR2) = q (35)

DR =
q

4πR2
(36)

Plug this back into eq. 33, to get

E(R) =
D(R)

ε
= R̂

q

4πεR2
(V/m) (37)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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which is the same as eq. 18, i.e. Coulomb’s law.
What’s the big deal? Gauss’s law is easier to apply, provided

that some symmetry of the charge distribution exists, so that we can
“guess” what the variation of magnitude and direction of D is going
to be. For example, use surfaces such that the magnitude of D is con-
stant on the surface and the direction is either normal to the surface
or tangential.

Find expression for E in free space due to an infinitely long line
of charge with uniform charge density ρl along the z-axis.

Symmetry dictates that D = r̂Dr. Find the right surface for
integration — see Fig. 8.∫ h

z=0

∫ 2π

φ=0

r̂Dr · r̂rdφdz = ρlh⇒ 2πhDrr = ρlh (38)

so that

E =
D

ε0
= r̂

Dr

ε0
= r̂

ρl
2πε0r

(infinite line of charge) (39)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4-10
Figure 8: Gaussian surface around an infinitely long line of charge
(Example 4-6).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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4.5. Electric scalar potential

How are electric fields related to our circuit analysis? It’s not im-
mediately obvious, but the voltage we use in circuits actually repre-
sents changes in potential energy, i.e. energy required to move a
unit charge between two points. The voltage difference represents the
amount of potential energy (or work) needed to move a unit charge
from one point to another. Let’s examine this new quantity in de-
tail and the relationship between electric scalar potential and electric
field.

• Electric potential as a function of electric field

Take positive charge q in uniform field, fig. 9. The force on that
charge will be pushing it in the direction of the field, i.e. −y. To
make it move at a constant velocity, forces have to be balanced, i.e.
an external force would have to “push” the charge in the +y direction
so that

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4-11
Figure 9: Work done in moving a charge q a distance dy against the
electric field E is dW = qE dy.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Fext = −Fe = −qE (40)

What is the work (energy) expanded?

dW = Fext · dl = −qE · dl (J) (41)

and is measured in Joules (J). If charge is moved some distance dy
along ŷ, then the differential potential energy is,

dW = −q(−ŷE) · ŷ dy = qE dy (42)

The differential electric potential (differential voltage dV ) is the dif-
ferential potential energy dW per unit charge,

dV =
dW

q
= −E · dl (J/C or V) (43)

Since voltage is measured in volts⇒ el. field measured in volts/meter

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Given two points, potential difference between them is obtained
by integration ∫ P2

P1

dV = −
∫ P2

P1

E · dl (44)

or

V21 = V2 − V1 = −
∫ P2

P1

E · dl (45)

where V1, V2 are electric potentials at those points.
Integration path should not matter; why? Gravitational field anal-

ogy.
If we have a closed loop, then integration will yield zero! That

should be expected from Kirchoff’s voltage law. More generally,∮
C

E · dl = 0 (Electrostatics) (46)

any closed loop integration of electrostatic field E is zero ⇒ this is
conservative (irrotational) field.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4-12
Figure 10: In electrostatics, the potential difference between P2 and
P1 is the same irrespective of the path used for calculating the line
integral of the electric field between them.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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This property is also expressed in Maxwell’s 2nd equation

∇×E = 0 (47)

Take a surface integral of above and use Stokes’s theorem to convert
it to a line integral ∫

S

(∇×E) · ds =

∮
C

E · dl = 0 (48)

where C is a closed contour surrounding S. Differential vs. integral
form!

Going back to potential: remember that voltage in a circuit is
meaningless unless there is a defined point of zero potential, called
ground so that all voltages are expressed relative to that point. ⇒
use the same principle to electric potential and define the reference
point potential at infinity, so that V1 = 0 when P1 is at ∞, so that

V = −
∫ P

∞
E · dl (V) (49)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Electric potential due to point charges

We’ve derived E for point charges:

E = R̂
q

4πεR2
(V/m) (50)

how do we get potential?

V = −
∫ R

∞

(
R̂

q

4πεR2

)
· R̂ dR =

q

4πεR
(V) (51)

where we’ve chosen the easiest path for integration (dl̂ = R̂dR). this
can be generalized to any other “origin”

V (R) =
q

4πε|R−R1|
(V) (52)

Superposition still valid:

V (R) =
1

4πε

N∑
i=1

qi
|R−Ri|

(V) (53)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Electric potential due to continuous distributions

Trick: instead of “true” point charge, look at some “small” volume,
surface or line segment. Instead of summation, use integration. Also,
redefine distance R′ = |R−Ri|. ⇒

V (R) =
1

4πε

∫
v′

ρv

R′
dv′ (volume distribution) (54)

V (R) =
1

4πε

∫
S′

ρs
R′

ds′ (surface distribution) (55)

V (R) =
1

4πε

∫
l′

ρl
R′

dl′ (line distribution) (56)

• Electric field as a function of electric potential

Turn the tables and express E in terms of V . Start with

dV = −E · dl (57)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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From before (eq. 3.73) we know that for scalar function

dV = ∇V · dl (58)

Comparing the two ⇒
E = −∇V (59)

So, what’s the big deal? Using expressions developed above, we
can calculate el. potential V ; note that the eqs. 54 etc. have scalar
integrals which are much easier to calculate. Once we get V , finding
E is simply taking a gradient.

Do example 4-7. Electric field of an electric dipole. First look at
as a simple sum of two contributions. Geometry of the case leads to
these approximations:

R2 −R1 ≈ d cos Θ, R1R2 ≈ R2 (60)

so that

V =
qd cos θ

4πε0R2
(61)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Re-write the numerator as a dot product of qd (see fig. 11):

qd cos θ = qd · R̂ = p · R̂ (62)

p = qd is dipole moment of the electric dipole.

V =
p · R̂

4πε0R2
(electric dipole) (63)

What is el. field? In spherical coordinates:

E = −∇V = −
(

R̂
∂V

∂R
+ θ̂

1

R

∂V

∂θ
+ φ̂

1

R sin θ

∂V

∂φ

)
(64)

so that

E =
qd

4πε0R3

(
R̂2 cos θ + θ̂ sin θ

)
(V/m) (65)

Note that this is valid only for R � d. If not, el. field profile
calculated from original formula (sum of two contributions). Result
shown in fig. 11.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4-13Figure 11: Electric dipole with dipole moment p = qd (Example 4-7).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Poisson’s equation

There are other ways to write Gauss’s law. Use D = εE so that

∇ ·E =
ρv

ε
(66)

but we can now express el. field as - gradient of potential

∇ · (∇V ) = −ρv

ε
(67)

and this is, by definition, the Laplacian of a scalar function

∇2V = ∇ · (∇V ) =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
(68)

so, in this notation

∇2V = −ρv

ε
(Poisson’s equation) (69)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Equation for V we derived earlier

V =
1

4πε

∫
v′

ρv

R′
dv′ (70)

satisfies Poisson’s equation.
If medium contains no charges

∇2V = 0 (Laplace’s equation) (71)

Use Poisson’s and Laplace’s eqs. for determining V in regions
where boundary conditions are known (C, p-n junctions etc).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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4.6. Conductors

From the electromagnetic perspective, we need three parameters, the
constitutive parameters, to characterize a medium: electrical permit-
tivity ε, magnetic permeability µ and conductivity σ. For homoge-
neous material the constitutive parameters are constant. For isotropic
material the constitutive parameters do not depend on direction.

The conductivity measures how easily electrons travel through ma-
terial under the influence of external field: conductors (metals) or
dielectrics (insulators) and semiconductors.

Averaged electron movement is described by electron drift velocity
ue which gives rise to conduction current.

Perfect conductors have infinite conductivity while insulators have
zero conductivity. Materials with conductivities between are cate-
gorized as semi-conductors. Most metals have large but finite con-
ductivities, materials that have near infinite conductivity are called
superconductors.

What’s the relationship between velocity and the externally ap-

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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plied electric field?

ue = −µeE (m/s) (72)

where µe is electron mobility (m2/V− s). If you had positive charges,
you’d need to change the sign

uh = µhE (m/s) (73)

These are the holes that are positive charge carriers.
If we assume volume density of charge ρv then these charges pro-

duce current density J = ρvu. If both types of charges are present:

J = Je + Jh = ρveue + ρvhuh (A/m2) (74)

which after substitution of eqs. 72, 73 gives

J = (−ρveµe + ρvhµh)E (75)

The quantity in parenthesis is the conductivity (recall, J = σE).
If we take Ne and Nh to be the number of free electrons and holes per
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unit volume, the charge density can be written as, ρve = −Nee and
ρvh = Nhe. This give us,

σ = −ρveµe + ρvhµh = (Neµe +Nhµh)e (S/m) (semiconductor)
(76)

For metals only electrons contribute

σ = −ρveµe = Neµee (S/m) (conductor) (77)

and both satisfy Ohm’s Law:

J = σE (A/m2) (Ohm’s law) (78)

For a perfect dielectric: σ = 0,J = 0 regardless of E. In a perfect
conductor σ =∞, E = J/σ = 0 regardless of J.

Perfect dielectric: J = 0

Perfect conductor: E = 0

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Good metals are very close to perfect conductors. If E = 0 ⇒ no
change in electric potential! We call this medium equipotential.

This also follows from the definition of the voltage difference be-
tween two points is the line integral of the electric file between the
points. Since, in a conductor, the electric field is zero everywhere in
the conductor then the voltage difference is also zero.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Resistance

We can apply J = σE to obtain resistance. The setup given in Fig. 12.
The voltage applied between points 1 and 2 establishes electric field
E = x̂Ex and points from the higher potential (1) to the lower poten-
tial (2).
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Electromagnetics I: Electrostatics 44
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x

Figure 4-14Figure 12: Linear resistor of cross section A and length l connected
to a d-c voltage source V.
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The potential difference can be written,

V = V1 − V2 = −
∫ x1

x2

E · dl = −
∫ x1

x2

x̂Ex · x̂ dl = Exl (V) (79)

What is the current flowing through intersection A?

I =

∫
A

J · ds =

∫
A

σE · ds = σExA (A) (80)

To get resistance (R = V/I) take a ratio of eqs. 79 and 80:

R =
l

σA
(Ω) (81)

This can be generalized to arbitrary shape,

R =
V

I
=
−
∫
l
E · dl∫

S
J · ds

=
−
∫
l
E · dl∫

S
σE · ds

(82)
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To calculate conductance (1/R) we use

G =
1

R
=
σA

l
(S) (83)

for the linear resistor. For the coaxial cable the conductance is as
follows:

J = r̂
I

A
= r̂

I

2πrl
(84)

E = r̂
I

2πσrl
(85)

Vab = −
∫ a

b

E · dl = −
∫ a

b

I

2πσl

r̂ · r̂ dr
r

=
I

2πσl
ln

(
b

a

)
(86)

G′ =
G

l
=

1

Rl
=

I

Vabl
=

2πσ

ln (b/a)
(S/m) (87)
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Figure 13: Coaxial cable of Example 4-9.
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• Joule’s Law

What’s the power dissipated in a conducting medium when E is
present? Look at the case when both positive (holes) and negative
(electron) charges are present with volume charge densities ρvh, ρve.
The force on qe and qh are Fe = qeE = ρveE∆v and Fh = qhE =
ρvhE∆v

The differential distance to move a charge is ∆le and ∆lh and the
work (energy) is force times distance, i.e.

∆W = Fe ·∆le + Fh ·∆lh (88)

Power P is time rate of change of energy, measured in watts.

∆P =
∆W

∆t
= Fe ·

∆le
∆t

+ Fh ·
∆lh
∆t

= Fe · ue + Fh · uh

= (ρveE · ue + ρvhE · uh)∆v = E · J∆v (89)

were we use J = ρvu.
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Finally, the total dissipated power in a volume ν is

P =

∫
v

E · Jdv (W) (Joule’s law) (90)

which is Joule’s law ; using J = σE results in

P =

∫
v

σ|E|2 dv (W) (91)

This can be simplified further for the uniform resistor case above by
breaking the volume integral into surface and line integral.

P =

∫
v

σ|E|2 dv =

∫
A

σEx ds

∫
l

Ex dl = (σExA)(Exl) = IV (W)

(92)
(using previous results for V and I). Using V = IR,

P = I2R (W) (93)
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Figure 14: In the absence of an external electric field Eext, the center
of the electron cloud is co-located with the center of the nucleus, but
when a field is applied, the two centers are separated by a distance d.

4.7. Dielectrics

The difference between dielectrics (insulators) and conductors is the
availability of free electrons in conductors. These can move in con-
ductors when an external field is applied. Figure 14 illustrates what
happens in dialectrics.
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• Since dielectrics are insulators, an applied external electric field
cannot induce charge movement similar to what happens in con-
ductors.

• There is a change of “balance” between positive and negative
charges in atoms (or molecules). A distortion of the atom can
occur which acts to polarize the material.

• Effectively, the external electric field sets up a dipole , illus-
trated in Fig. 14.

• This induced or polarization field is weaker and opposite in di-
rection to Eext ⇒ the net electric field in dielectrics is smaller
than Eext.
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• These dipoles align themselves as in Fig. 15. Note that there is
positive charge on top and negative on the bottom surface (for
electric field from bottom to top)

• Things are a bit different for polar materials, i.e. those that
already have dipoles even when no external field is present. Such
dipoles would tend to align along the lines of external electric
field, similarly to fig. 15.
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Figure 15: A dielectric medium polarized by an external electric field
Eext.
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How is this going to affect the relationship between the electric
field intensity E and electric flux density D?

D = ε0E + P (94)

where P is the electric polarization field , and accounts for the po-
larization properties of the materials. It is produced by the electric
field E and depends on material properties. Materials classified as:

Linear: Magnitude of the induced polarization field is directly pro-
portional to the magnitude of E

Isotropic: Polarization field P and E are in the same direction

Anisotropic: P and E have different directions

Homogeneous: Material properties (constitutive parameters),
i.e. ε, µ, σ are constant throughout medium
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For linear, isotropic and homogenous media:

P = ε0χeE (95)

where χe is the electric susceptibility of the material.

D = ε0E + ε0χeE = ε0(1 + χe)E = εE (96)

so that permittivity ε is

ε = ε0(1 + χe) (97)

Often, it is more convenient to use relative permittivity εr = ε/ε0.
See table 4-2 for the relative permittivities for various materials.

• For most conductors εr ≈ 1

• Air has dielectric constant ≈ 1

• If E exceeds a critical value, called the dielectric strength , elec-
trons are stripped away and dielectric starts conducting ⇒ di-
electric breakdown.
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4.8. Electric boundary conditions

We examined only simple situations where we are in a single medium
that is not changing. If there is a change from one medium to another,
we need to examine what happens to the electric field at the interface.
In other words, we need to know the boundary conditions (BC-s).
We’ll look at both dielectric-dielectric and dielectric-conductor bound-
aries. It’s important to note that these BC-s will be valid for time-
dependent cases as well.

• Start with Fig. 16 that illustrates the boundary between two
dielectrics.
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Figure 4-18Figure 16: Interface between two dielectric media.

• In general, the boundary may contain surface charge density ρs.

• We need to examine both the tangential and normal components
of the electric field. We start with the tangential by constructing
a closed rectangular loop abcda in Fig. 16.

• Apply the conservative property of the electric field
∮
C

E ·dl = 0
which states that line integral over a closed loop produces zero.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Electrostatics 58

• Also let ∆h→ 0 so that bc and da contributions → 0.∮
C

E · dl =

∫ b

a

E2 · dl +

∫ d

c

E1 · dl = 0 (98)

where E1 and E2 are the electric field in media 1 and 2.

• Breaking up the field into normal and tangential components
gives,

E1 = E1t + E1n, E2 = E2t + E2n (99)

• Over segment ab, Et · ∆l has the opposite sign of Et · ∆l over
cd (why?) so that,

E2t ∆l = E1t ∆l or E1t = E2t (V/m) (100)

• Tangential component of the electric field is continuous
across the boundary between any two media.
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• For the flux density we use D1t = ε1E1t and D2t = ε2E2t

D1t

ε1
=
D2t

ε2
(101)

• What about the normal components? We use Gauss’s law.

• First, set up a small cylinder, as shown in Fig. 16. Gauss’s law
states that the total outward flux of D integrated over the three
surfaces must be equal to the total charge inside the cylinder.
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• As we let ∆h → 0, the side (curved) surface contribution →
0. This also means that any volume charge density will not
contribute to the total charge (i.e. only have to consider surface
charge).

• The only remaining charge is the one at the boundary: Q =
ρs∆s. Add up the flux from the other boundaries:∮

S

D ·ds =

∫
top

D1 · n̂2 ds+

∫
bottom

D2 · n̂1 ds = ρs ∆s (102)

where n̂-s are outward normal unit vectors of the bottom and
top surfaces.
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• Since n̂1 = −n̂2

n̂2 · (D1 −D2) = ρs (C/m2) (103)

• By looking at the normal components, which are defined as be-
ing along the normal unit vectors, we get

D1n −D2n = ρs (C/m2) (104)

i.e. normal component of D changes abruptly at a charged
boundary between two different media, and the amount
of change is equal to the surface charge density.

• What about the electric field?

ε1E1n − ε2E2n = ρs (105)

Summary: conservative property of E

∇×E = 0⇐⇒
∮
C

E · dl = 0 (106)
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leads to continuous tangential components of E across a boundary,
while the divergence property of D

∇ ·D = ρv ⇐⇒
∮
S

D · ds = Q (107)

leads to abrupt changes in normal components of D across the bound-
ary. See Table 4-3 for a summary of BC-s.
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Figure 17: BC-s between two dielectric media (Ex. 4-10).
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• Dielectric-conductor boundary

Medium 2 is now a perfect conductor, i.e. E = D = 0 everywhere
inside medium 2.

• So, E2t = 0 , D2n = 0 and previously we found that E1t = E2t

and D1n −D2n = ρs so

E1t = D1t = 0, and D1n = ε1E1n = ρs (108)

• Combining these two

D1 = ε1E1 = n̂ρs (at conductor surface) (109)

where n̂ is unit vector directed normally outward from the con-
ducting surface.

• Electric field lines point directly away from the conduc-
tor surface when ρs is positive and directly toward the
conductor surface when ρs is negative.
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Figure 4-20
Figure 18: Conducting slab in an external electric field E0. Charges
on the conductor surfaces induce an internal electric field Ei = −E0.

• Fig. 18 shows infinitely long conducting slab in uniform exter-
nally applied E0. Since E0 points away from the upper surface
it induces a positive charge density ρs. On the bottom surface
it is opposite and we get −ρs. These surface charges induce an
electric field Ei in the conductor such that the total field in the
conductor is zero (as it should be).
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• The presence of surface charges can be viewed as inducing an
electric field inside the conductor Ei, resulting in the total field
E = E0 + Ei.

• In a perfect conductor E = 0 ⇒ Ei = −E0.
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Figure 19: Metal sphere in an external electric field E0.

• Now take a look at what happens when a metal sphere is intro-
duced in electric field, as in Fig. 19.

• Negative charge on the bottom, positive on top of sphere. elec-
tric field bends to satisfy condition D1 = ε1E1 = n̂ρs.

• E is always normal to the surface at the conductor
boundary!
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Figure 20: Boundary between two conducting media.

• Conductor-conductor boundary

Here we examine the boundary between materials that are not perfect
conductors or perfect dielectrics as shown in Fig. 20. Note that we
now also have conductivities σ.
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• For electric field (and fluxes) things stay the same, so we use:

E1t = E2t, ε1E1n − ε2E2n = ρs (110)

• The two media have finite conductivities, so the electric fields
give rise to current densities, i.e. J1 = σE1 etc. so that eq. 110
leads to

J1t

σ1
=
J2t

σ2
, ε1

J1n

σ1
− ε2

J2n

σ2
= ρs (111)

• The tangential components represent currents flowing parallel
to the boundary⇒ no charge transfer is involved between these
two components.

• Normal components of current density are different: if J1n 6=
J2n then the amount of charge (per second) that arrives at the
boundary is different than the amount that leaves ⇒ ρs would
have to change with time! This cannot be allowed according
to the “static” assumption that fields and charges are not time
dependent.
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• Therefore, the normal component of J has to be con-
tinuous across the boundary between the two different
media under electrostatic conditions, i.e. set J1n = J2n

J1n

(
ε1

σ1
− ε2

σ2

)
= ρs (electrostatics) (112)
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Figure 4-23Figure 21: A d-c source connected to two conducting bodies (C).

4.9. Capacitance

A capacitor is formed whenever there are two metal (conducting)
bodies separated by a dielectric.
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• A d-c voltage applied to such pair, as shown in Fig. 21, will
charge up the conductor that is connected to the + side of the
source with +Q, and the other conductor with −Q.

• Note that when conductor has excess charge it distributes the
charge on its surface in such a manner as to maintain a
zero electric field everywhere within the conductor. This
ensures that the conductor is an equipotential body, i.e. that
the potential is the same everywhere in or on the conductor.

• Capacitance of a two-conductor capacitor is defined as

C =
Q

V
(C/V or F) (113)

• The charge on the surface gives rise to the electric field E. Lines
originate on + charges and terminate on − charges. Remember
that E is always normal to conductor surface.

En = n̂ ·E =
ρs
ε

(at conductor surface) (114)
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• What is Q equal to? We need to integrate over the surface:

Q =

∫
S

ρs ds =

∫
S

εn̂ ·E ds =

∫
S

εE · ds (115)

• Remember how to calculate voltage difference:

V = V12 = −
∫ P1

P2

E · dl (116)

where P1 is on conductor 1 and P2 on conductor 2.

• Plug these into definition of C

C =

∫
S
εE · ds

−
∫
l
E · dl

(F) (117)

where l is integration path from conductor 2 to conductor 1.

• Note that the value of C is independent of E, but it depends on
geometry and permittivity (dielectric const.) of the insulating
material.
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If the dielectric is not perfect, there is some finite resistance, which
is calculated using the general expression for resistance (eq. 4.71 in
book)

R =
−
∫
l
E · dl∫

S
σE · ds

(Ω) (118)

and if medium is homogeneous (uniform σ, ε), then multiplying the
above with,

C =

∫
S
εE · ds

−
∫
l
E · dl

(F) (119)

RC =
ε

σ
(120)
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Figure 22: A d-c voltage source connected to a parallel-plate capacitor
(Example 4-11).

Example 4-11: Capacitance and breakdown voltage of parallel
plate capacitor. One approximation needed: neglect fringing fields!
Setup shown in fig. 22.

V = −
∫ d

0

E · dl = −
∫ d

0

(−ẑE) · ẑ dz = Ed (121)

ρs = Q/A (122)
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ρs = Q/A (123)

E = ρs/ε = Q/εA (124)

C =
Q

V
=

Q

Ed
=
εA

d
(125)
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Figure 4-25
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Figure 23: Coaxial capacitor filled with insulating material of permit-
tivity ε (Example 4-12).

Example 4-12: capacitance of coaxial line.

E = −r̂
ρl

2πεr
= −r̂

Q

2πεrl
(126)

V = −
∫ b

a

E · dl = −
∫ b

a

(
−r̂

Q

2πεrl

)
· (r̂ dr)

=
Q

2πεl
ln

(
b

a

)
(127)
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C =
Q

V
=

2πεl

ln (b/a)
(128)

C ′ =
C

l
=

2πε

ln (b/a)
(F/m) (129)
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4.10. Electrostatic potential energy

Intuition tells us that placing charge onto capacitor plates will in-
volve some energy expenditure. Where is it “spent”? If materials are
perfect, then there are no ohmic losses. Energy is actually stored in
the dielectric medium as electrostatic potential energy We and the
amount is related to V,C and Q.

• Under the influence of an electric field, equal but opposite charges
accumulate on the conductors. We can view it as a “transfer”
of charge q from one conductor to another.

• From before, voltage accross the capacitor and q are related via

v =
q

C
(130)

• By looking at eq. 43 (really a definition of electrostatic poten-
tial), the amount of work dWe required to transfer additional
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charge dq is

dWe = v dq =
q

C
dq (131)

• To get the total energy starting with an uncharged capacitor C
we need to integrate:

We =

∫ Q

0

q

C
dq =

1

2

Q2

C
(J) (132)

or, (remembering that Q = CV )

We =
1

2
CV 2 (J) (133)

• This can be expressed differently for parallel plate capacitor
where, C = εA/d, and V = Ed

We =
1

2

εA

d
(Ed)2 =

1

2
εE2(Ad) =

1

2
εE2v (134)

where v = Ad is volume between the plates.
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• This enables us to introduce electrostatic energy density we as
We per unit volume

we =
We

v
=

1

2
εE2 (J/m3) (135)

although derived for a parallel plate capacitor it is equally valid
valid in the general case of a dielectric medium in an electric
field. E.

• If energy density is known (i.e. E), finding out total electrostatic
potential energy involves volume integration

We =
1

2

∫
v

εE2 dv (J) (136)
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A different interpretation is possible by looking at the forces on
the two charged plates.

• If two plates are allowed to move closer by some differential
distance dl under the force F while maintaining constant charge,
the work done is

dW = F · dl (137)

• This energy has to come from somewhere; some of the potential
energy stored in the dielectric is expended, such that,

dW = −dWe (138)

• From before we know how to calculate a directional derivative
using the gradient,

dWe = ∇We · dl (139)

• Comparing this with dW = F · dl gives us,

F = −∇We (N) (140)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Note the assumption that the charges in the system are constant.

• This can be applied to a parallel plate capacitor starting from
(where C = εA/d and we will replace fixed distance d with the
variable z),

We =
1

2

Q2

C
=
Q2z

2εA
(141)

• Which, after the gradient operation, gives

F = −∇We = −ẑ
∂

∂z

(
Q2z

2εA

)
= −ẑ

(
Q2

2εA

)
(142)

or, using E = ρs/ε = Q/εA or Q = εAE

F = −ẑ
εAE2

2
(parallel-plate capacitor) (143)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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