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3. Vector Analysis
We had it easy so far: all our quantities were scalar (remember that
some of the quantities were complex, though). From now on, we
need vectors which will describe dependence of various quantities
(primarily electric E and magnetic H fields) in 3-D space. What
follows is a review of vector algebra, coordinate systems and vector
calculus.

Remember, a vector specifies both magnitude and direction of a
quantity. For example, temperature is a scalar (number only) while
velocity is a vector (speed and direction).

3.1. Vector Algebra

A vector is specified by its magnitude A = |A|, and its direction
which can be specified using a unit vector â, as illustrated in Fig. 1

A = â|A| = âA (1)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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â

A = aA^
A

1

Figure 3-1Figure 1: Vector A = âA has a magnitude A = |A| and unit vector
â = A/A.

â =
A

|A|
=

A

A
(2)

In the Cartesian (or rectangular) coordinate system (shown in fig.
2), there are three mutually perpendicular coordinates x, y, z and cor-
responding unit (or base) vectors x̂, ŷ, ẑ. Any vector A can be repre-
sented in terms of its components along different axes, as illustrated
in fig. 2.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 2: Cartesian coordinate system: (a) base vectors x̂, ŷ, and ẑ,
and (b) components of vector A.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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A = x̂Ax + ŷAy + ẑAz (3)

Application of Pythagorean theorem, gives

A = |A| = +

√
A2
x +A2

y +A2
z, â =

A

A
=

x̂Ax + ŷAy + ẑAz

+

√
A2
x +A2

y +A2
z

(4)

You will also see vectors denoted â = (Ax, Ay, Az).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Vector equality

Given two vectors

A = âA = x̂Ax + ŷAy + ẑAz (5)

B = b̂B = x̂Bx + ŷBy + ẑBz (6)

they will be equal, i.e. A = B, if they have equal magnitudes and
identical unit vectors, i.e. A = B and â = b̂, or Ax = Bx, Ay = By,
and Az = Bz. It’s interesting that two vectors can be equal but not
identical. That is, they might have the same magnitude and direction
but displaced from each other (think about parallel vectors).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Vector addition and subtraction

The sum of two vectors is given by,

C = A + B = B + A (7)

where the order of addition does not matter. Graphical interpretation:
parallelogram rule or head-to-tail rule (Fig. 3).

For rectangular coordinate system we have

C = A + B

= (x̂Ax + ŷAy + ẑAz) + (x̂Bx + ŷBy + ẑBz)

= x̂(Ax +Bx) + ŷ(Ay +By) + ẑ(Az +Bz) (8)

i.e. summation is done by components.
Subtraction is done the same way as addition, but the negative

vector’s direction is changed,

D = A−B = A + (−B)

= x̂(Ax −Bx) + ŷ(Ay −By) + ẑ(Az −Bz) (9)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 3: Vector addition by (a) the parallelogram rule and (b) the
head-to-tail rule.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Position and distance vectors

A position vector of the point P is defined as a vector starting from
the origin and ending at P . Fig. 4 shows two position vectors, R1

and R2.

R1 =
−−→
OP1 = x̂x1 + ŷy1 + ẑz1 (10)

R2 =
−−→
OP2 = x̂x2 + ŷy2 + ẑz2 (11)

The vector connecting P1 and P2 is called the distance vector:

R12 =
−−−→
P1 P2 = R2 −R1

= x̂(x2 − x1) + ŷ(y2 − y1) + ẑ(z2 − z1) (12)

To find the distance between two points, calculate the magnitude of:
R12

d = |R12|
= [(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]1/2 (13)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4: Position vector R12 = P1 P2 = R2 −R1.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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The first subscript of R12 denotes the location of its tail and the
second subscript the location of its head (see Fig. 4).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Vector multiplication

There are three kinds of vector products:

• Simple product is a product between a scalar and a vector

B = kA = âkA = x̂(kAx) + ŷ(kAy) + ẑ(kAz) (14)

This multiplication preserves direction, but changes the magni-
tude

• Scalar (dot) product is denoted by A ·B and is defined as

A ·B = AB cos θAB (15)

where θAB is the angle between vectors A and B, as shown in
Fig. 5.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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q AB

A B

(b)

Figure 3-5
Figure 5: The angle θAB is the angle between A and B measured
from A to B between vector tails. The dot product is positive if
0 ≤ θAB < 90◦, as in (A), and it is negative if 90◦ < θAB ≤ 180◦, as
in (b).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Interpretation: A cos ΘAB is the projection of vector A along
the direction of vector B. Given,

A ·B = (x̂Ax + ŷAy + ẑAz) · (x̂Bx + ŷBy + ẑBz) (16)

and

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1 (17)

x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0 (18)

we get
A ·B = AxBx +AyBy +AzBz (19)

Some properties of the dot product are:

A ·B = B ·A (commutative property) (20)

A · (B + C) = A ·B + A ·C (distributive property)(21)

Also, the dot product of a vector with itself gives,

A ·A = |A|2 = A2 (22)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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and
A = |A| = +

√
A ·A (23)

The angle between vectors can be determined from,

θAB = cos−1

[
A ·B

+
√

A ·A +
√

B ·B

]
(24)

• Vector or cross product is defined as

A×B = n̂AB sin θAB (25)

wher θAB is the angle between A and B is measured from the
tail of A to the tail of B (direction is important!).

Interpretation: cross product is equal (in magnitude) to the
area of a parallelogram defined by two vectors and its direction
is given by the right-hand rule (Fig. 6).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 3-6

Figure 6: Cross product A × B points in the direction n̂, which is
perpendicular to the plane containing A and B and defined by the
right-hand rule.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Some properties:

A×B = −B×A (anticommutative) (26)

A× (B + C) = A×B + A×C (distributive) (27)

A×A = 0 (28)

From the definition, we observe that

x̂× ŷ = ẑ, ŷ × ẑ = x̂, ẑ× x̂ = ŷ (29)

x̂× x̂ = ŷ × ŷ = ẑ× ẑ = 0 (30)

If we write out the product

A×B = (x̂Ax + ŷAy + ẑAz)× (x̂Bx + ŷBy + ẑBz)

= x̂(AyBz −AzBy) + ŷ(AzBx −AxBz)
+ ẑ(AxBy −AyBx) (31)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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but it is simpler to remember this

A×B =

∣∣∣∣∣∣
x̂ ŷ ẑ
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣ (32)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Triple products

Not all combinations of vector products are meaningful, e.g. A× (B ·
C). What about A(B ·C)?

• Scalar triple product is a dot product of vector with a cross
product of two other vectors, and it obeys cyclic order

A · (B×C) = B · (C×A) = C · (A×B) (33)

The result can be written in the form of a determinant

A · (B×C) =

∣∣∣∣∣∣
Ax Ay Az
Bx By Bz
Cx Cy Cz

∣∣∣∣∣∣ (34)

• Vector triple product involves cross product of a vector with a
cross product of two other vectors:

A× (B×C) (35)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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It does not obey associative law, i.e.

A× (B×C) 6= (A×B)×C (36)

i.e. order of multiplication must be specified with parenthesis.
Furthermore,

A× (B×C) = B(A ·C)−C(A ·B) (37)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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3.2. Orthogonal coordinate systems

Why do we care about coordinate systems other than the familiar
Cartesian? Solving specific problems can be simplified greatly if the
right coordinate system is chosen. Orthogonal coordinate systems
means the coordinates are mutually perpendicular.

• Cartesian coordinates

We’ve already worked with this one in the previous section. Its vector
properties are summarized in Table 3.1 in Ulaby.

Let’s look at some differential quantities, illustrated in Fig. 7:

Length:

dl = x̂ dlx + ŷ dly + ẑ dlz = x̂ dx+ ŷ dy + ẑ dz (38)

Surface: This vector has magnitude equal to the product of two dif-
ferential lengths and the direction is along the third axis.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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dsx = x dy dz^

dsy = y dx dz^

dsz = z dx dy^

dx

dz

dy

d   = dx dy dz
dz

dy

dx

dl

z

y

x

Figure 3-8

Figure 7: Differential length, area, and volume in Cartesian coordi-
nates.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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dsx = x̂ dly dlz = x̂ dy dz (y-z plane) (39)

dsy = ŷ dx dz (x-z plane) (40)

dsz = ẑ dx dy (x-y plane) (41)

Volume : Scalar and equal to the product of the three differential
lengths,

dν = dx dy dz (42)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Cylindrical coordinates

What are Cylindrical coordinates used for? Think about coaxial lines.
Cylindrical coordinates use three variables: r, φ, z, shown in Fig. 8.

• r = radial distance in the x − y plane. Range of values: 0 ≤
r <∞.

• φ = azimuth angle measured from the positive x−axis. Range
of values: 0 ≤ φ < 2π

• z — same as Cartesian system. Range of values: −∞ < z <∞

Point P is located at the intersection of:

1. Cylindrical surface defined by r = r1,

2. Vertical half-plane defined by φ = φ1

3. Horizontal plane defined by z = z1

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 8: Point P (r1, φ1, z1) in cylindrical coordinates; r1 is the radial
distance from the origin in the x-y plane, φ1 is the angle in the x-
y plane measured from the x-axis toward the y-axis, and z1 is the
vertical distance from the x-y plane.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Mutually perpendicular base vectors:

• r̂ — points away from the origin along r

• φ̂ — pointing tangentially to the cylindrical surface

• ẑ — points along vertical axis.

Some properties:

• r̂ · r̂ = φ̂ · φ̂ = ẑ · ẑ = 1 and cross product with itself = 0.

• Base unit vectors obey right-hand cyclic relations

r̂× φ̂ = ẑ, φ̂× ẑ = r̂, ẑ× r̂ = φ̂ (43)

• Components of a vector are expressed as

A = â|A| = r̂Ar + φ̂Aφ + ẑAz (44)

where components are along their respective axis directions.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnitude of a vector is obtained from

|A| = +
√
A ·A = +

√
A2
r +A2

φ +A2
z (45)

Look at Fig. 8: that position vector has components only along r
and z.

R1 =
−−→
OP = r̂r1 + ẑz1 (46)

and its dependence on φ1 is only implicit through r̂.
How about differential elements (shown in Fig. 9):

Length: along axis we have:

dlr = dr, dlφ = r dφ, dlz = dz (47)

and in general:

dl = r̂ dlr + φ̂ dlφ + ẑ dlz = r̂ dr + φ̂r dφ+ ẑ dz (48)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Surface: different surfaces:

dsr = r̂ dlφ dlz = r̂r dφ dz (φ-z cylindrical surface) (49)

dsφ = φ̂ dlr dlz = φ̂ dr dz (r-z plane) (50)

dsz = ẑ dlr dlφ = ẑr dr dφ (r-φ plane) (51)

Volume:
dν = dlr dlφ dlz = r dr dφ dz (52)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 3-10

Figure 9: Differential areas and volume in cylindrical coordinates.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Spherical Coordinates

Position specified by variables R, θ, φ, shown in Fig. 10.

• Range coordinate R. Range of values: 0 ≤ R <∞.

• Zenith angle θ, measured from the positive z− axis; it de-
scribes a conical surface with apex at the origin. Range of val-
ues: 0 ≤ θ ≤ π.

• Azimuth angle — same as in cylindrical system. Range of
values: 0 ≤ φ < 2π

Some properties:

• Right-hand cyclic relations are:

R̂× θ̂ = φ̂, θ̂ × φ̂ = R̂, φ̂× R̂ = θ̂ (53)

• Vector components are written:

A = â|A| = R̂AR + θ̂Aθ + φ̂Aφ (54)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 10: Point P (R1, θ1, φ1) in spherical coordinates.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Vector Analysis 33

• The vector magnitude:

|A| = +
√

A ·A = +

√
A2
R +A2

θ +A2
φ (55)

• The position vector of the point P (R1, θ1, φ1),

R1 =
−−→
OP = R̂R1 (56)

but remember that R̂ is implicitly dependent on θ1, φ1.

The differential lengths (shown in fig. 11):

Length:
dlR = dR, dlθ = Rdθ, dlφ = R sin θ dφ (57)

dl = R̂ dlR + θ̂ dlθ + φ̂ dlφ

= R̂ dR+ θ̂R dθ + φ̂R sin θ dφ (58)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 11: Differential volume in spherical coordinates.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Surface:

dsR = R̂ dlθ dlφ = R̂R2 sin θ dθ dφ (θ-φ spherical surface)(59)

dsθ = θ̂ dlR dlφ = θ̂R sin θ dR dφ (R-φ conical surface)(60)

dsφ = φ̂ dlR dlθ = φ̂R dR dθ (R-θ plane) (61)

Volume:
dν = dlR dlθ dlφ = R2 sin θ dR dθ dφ (62)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 12: Spherical strip of Example 3-5.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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3.3. Coordinate transformations

Positions and vectors are the same no matter what coordinate system
we use ⇒ we can transform one set of coordinates to another.

• Cartesian to cylindrical

Take point P in Fig. 13. Its Cartesian coordinates are (x, y, z), and
cylindrical are (r, φ, z). Note that z coordinate is shared; the other two
can be determined from the geometry, so that cartesian to cylindrical
coordinate transformation is:

r = +
√
x2 + y2, φ = tan−1

(y
x

)
(63)

and cylindrical to cartesian,

x = r cosφ, y = r sinφ (64)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 3-16

Figure 13: Interrelationships between Cartesian coordinates (x, y, z)
and cylindrical coordinates (r, φ, z).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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f f f^

x̂

ŷ
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Figure 3-17

Figure 14: Interrelationships between base vectors (x̂, ŷ) and (r̂, φ̂).

How about the relationship between base vectors? Refer to Fig. 14.
The procedure involves realizing, from the geometry that,

r̂ · x̂ = cosφ, r̂ · ŷ = sinφ (65)

φ̂ · x̂ = − sinφ, φ̂ · ŷ = cosφ (66)

(Maybe easier to see if we let α = π/2 − φ so φ = π/2 − α and
cos(α) = sin(π/2− α) = sin(φ))

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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We can write r̂ in terms of x̂ and ŷ

r̂ = x̂a+ ŷb (67)

where we don’t yet know the values for a and b. Use the dot product
to solve for a,

r̂ · x̂ = x̂ · x̂a+ ŷ · x̂b = a (68)

and recall, r̂ · x̂ = cosφ so, a = cosφ. Similarly, b = r̂ · ŷ = sinφ.
The same can be done for φ̂ leading to,

r̂ = x̂ cosφ+ ŷ sinφ (69)

φ̂ = −x̂ sinφ+ ŷ cosφ (70)

remember that ẑ is the same in cylindrical and cartesian. For the
inverse relations we can solve the above simultaneously to get,

x̂ = r̂ cosφ− φ̂ sinφ (71)

ŷ = r̂ sinφ+ φ̂ cosφ (72)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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These are useful for converting vectors from one coordinate system
to another. Remember that in Cartesian coordinates is A = x̂Ax +
ŷAy + ẑAzand in cylindrical A = r̂Ar + φ̂Aφ + ẑAz. Using,

x̂ = r̂ cosφ− φ̂ sinφ (73)

ŷ = r̂ sinφ+ φ̂ cosφ (74)

we can write A as,

A = Ax

[
r̂ cosφ− φ̂ sinφ

]
+Ay

[
r̂ sinφ+ φ̂ cosφ

]
+ ẑAz (75)

and collect the terms for Ar and Aφ,

Ar = Ax cosφ+Ay sinφ (76)

Aφ = −Ax sinφ+Ay cosφ (77)

and conversely, using

r̂ = x̂ cosφ+ ŷ sinφ (78)

φ̂ = −x̂ sinφ+ ŷ cosφ (79)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Ax = Ar cosφ−Aφ sinφ (80)

Ay = Ar sinφ+Aφ cosφ (81)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Cartesian to spherical

Use Fig. 15 as a starting point. From it we obtain:

R = +
√
x2 + y2 + z2 (82)

θ = tan−1

[
+
√
x2 + y2

z

]
(83)

φ = tan−1
(y
x

)
(84)

and inversely (recognizing that r = R sin θ),

x = R sin θ cosφ (85)

y = R sin θ sinφ (86)

z = R cos θ (87)
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z

x

y = r sin f

x = r cos f

z = R cos q

y

R

f
r

ẑ
R̂

r̂

r̂

f f f^

q

q

(p /2 - q )

Figure3-18

Figure 15: Interrelationships between (x, y, z) and (R, θ, φ).
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R̂ is always some combination of r̂ and ẑ so,

R̂ = r̂a+ ẑb (88)

R̂ · r̂ = a (89)

R̂ · ẑ = b (90)

Also, note that R̂ · ẑ = cos θ = b and R̂ · r̂ = cos(π/2−θ) = sin θ = a.
Also, recall,

r̂ = x̂ cosφ+ ŷ sinφ (91)

So we obtain the following base vector transformation:

R̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (92)
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The other base vectors transform similarly to give:

R̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (93)

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ (94)

φ̂ = −x̂ sinφ+ ŷ cosφ (95)

The inverse operations are obtained from:

x̂ = R̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ (96)

ŷ = R̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ (97)

ẑ = R̂ cos θ − θ̂ sin θ (98)

To transform components, just replace unit vectors with their respec-
tive component values, i.e. x̂→ Ax, R̂→ AR.
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• Distance between two points

We know how to find distance between two points in Cartesian system:

d = |R12|
= [(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]1/2 (99)

Utilizing the transformations in eq. 64, for cylindrical coordinates
this becomes

d = [(r2 cosφ2 − r1 cosφ1)2

+(r2 sinφ2 − r1 sinφ1)2 + (z2 − z1)2]1/2

= [r2
2 + r2

1 − 2r1r2 cos (φ2 − φ1) + (z2 − z1)2]1/2 (100)

(cylindrical)

Similarly, for spherical coordinates use eq. 85 -87

d = {R2
2 +R2

1 − 2R1R2[cos θ2 cos θ1

+ sin θ1 sin θ2 cos (φ2 − φ1)]}1/2 (101)

(spherical)
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3.4. Gradient of a scalar field

Things are simple if we have a scalar that depends on only one quan-
tity ⇒ finding the rate of change is simply df(z)/dz. What do we do
about 3-D (scalars and vectors)? For 3-D we can do partial deriva-

tives, but how do we combine them? We use gradient , divergence

and curl operators. Gradient operates on scalars, the others operates
on vectors.

Take temperature T1(x, y, z) as an example, shown in Fig. 16.
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dl

P1(x, y, z)

P2(x+dx, y+dy, z+dz)

dx
dy

dz

z

y

x

Figure 3-19

Figure 16: Differential distance vector dl between points P1 and P2.

• The differential distance dl has components

dl = x̂ dx+ ŷ dy + ẑ dz (102)

• The differential temperature dT = T2 − T1 is

dT =
∂T

∂x
dx+

∂T

∂y
dy +

∂T

∂z
dz (103)
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• We have by definition, dx = x̂ · dl, dy = ŷ · dl and dz = ẑ · dl to
get,

dT = x̂
∂T

∂x
· dl + ŷ

∂T

∂y
· dl + ẑ

∂T

∂z
· dl

=

[
x̂
∂T

∂x
+ ŷ

∂T

∂y
+ ẑ

∂T

∂z

]
· dl (104)

which is the change in temperature corresponding to a vector
change in position dl.

• This is called the gradient of T or grad T or ∇T .

∇T = grad T , x̂
∂T

∂x
+ ŷ

∂T

∂y
+ ẑ

∂T

∂z
(105)

• We can now plug this into eq. 104

dT = ∇T · dl (106)
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where ∇ is called del or gradient operator, defined as

∇ , x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(Cartesian) (107)

• Quote from Ulaby (in blue print in the text): “whereas the
gradient operator has no physical meaning by itself, it attains a
physical meaning once it operates on a scalar physical quantity,
and the result of the operation is a vector whose magnitude is
equal to the maximum rate of change of the physical quantity
per unit distance and whose direction is along the direction of
maximum increase.”

• Define a unit vector in the direction of dl as dl = âldl so that
the directional derivative of T along direction of âl is

dT

dl
= ∇T · âl (108)
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• Finally, if ∇T is a known 3-D function, the difference T2 − T1

(see Fig. 16) is calculated from,

T2 − T1 =

∫ P2

P1

∇T · dl (109)
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• Gradient operator in cylindrical and spherical coordinates

We derived the previous using Cartesian coordinates but we should
have an equivalent operation in any orthogonal coordinate system,
namely, cylindrical and spherical. So what do we do in cylindrical
and spherical coordinate systems? We have to express ∇ in these
coordinate systems. Recall that in the cylindrical system we get,

r = +
√
x2 + y2, tanφ =

(y
x

)
(110)

and we can use the chain rule,

∂T

∂x
=
∂T

∂r

∂r

∂x
+
∂T

∂φ

∂φ

∂x
+
∂T

∂z

∂z

∂x
(111)

and the derivatives,

∂r

∂x
=

x√
x2 + y2

= cosφ (112)
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∂φ

∂x
= − sinφ

r
(113)

Note, this one is a bit trickier— you have to remember some calculus.

φ = tan−1(y/x) and d tan−1(y/x)
dx = d(y/x)/dx

1+(y/x)2 , so you get −y/x2

1+(y/x)2 =
−y

x2+y2 = −y
r2 = − sinφ/r. So we get,

∂T

∂x
= cosφ

∂T

∂r
− sinφ

r

∂T

∂φ
(114)

which can be used in,

∇T = x̂
∂T

∂x
+ ŷ

∂T

∂y
+ ẑ

∂T

∂z
(115)

We get a simlar expression for for ∂T/∂y. (what about ∂T/∂z?). We
also need to express unit vectors; for that use,

x̂ = r̂ cosφ− φ̂ sinφ (116)

ŷ = r̂ sinφ+ φ̂ cosφ (117)
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So that we get,

∇T = r̂
∂T

∂r
+ φ̂

1

r

∂T

∂φ
+ ẑ

∂T

∂z
(118)

or

∇ = r̂
∂

∂r
+ φ̂

1

r

∂

∂φ
+ ẑ

∂

∂z
(cylindrical) (119)

In spherical coordinates we get

∇ = R̂
∂

∂R
+ θ̂

1

R

∂

∂θ
+ φ̂

1

R sin θ

∂

∂φ
(spherical) (120)

• Properties of the gradient operator

(1) ∇(U + V ) = ∇U +∇V (121)

(2) ∇(U V ) = U ∇V + V ∇U (122)

(3) ∇V n = nV n−1∇V for any n (123)

Note that gradient of a vector is meaningless.
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3.5. Divergence of a vector field

First a little background. We’ve already seen how electric charge
introduces an electric field around it, as illustrated in Fig. 17. This
vector field is represented by field lines (little arrows). The field itself
does not move but it can move charge introduced into that field, so
we think of field lines as flux lines and define their flux density as
amount of outward flux crossing a unit surface ds, i.e.

Flux density of E =
E · ds
|ds|

=
E · n̂ ds
ds

(124)

where n̂ is the outward surface normal of ds.
The total flux crossing a closed surface is simply a surface integral

Total flux =

∮
S

E · ds (125)
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Imaginary
spherical
surface

+q

n̂

Figure 3-20

Figure 17: Flux lines of the electric field E due to a positive charge q.
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Let’s now look at Fig. 18 and try to calculate the total flux.

• We start with a parallelepiped such as the cube shown

• There are six faces — we sum up fluxes over all of them. Start
by defining E.

E = x̂Ex + ŷEy + ẑEz (126)

• Note that the outward normal vector on surface 1 is in the neg-
ative x direction, i.e. n̂1 = −x̂, so that

F1 =

∫
Face 1

E · n̂1 ds

=

∫
Face 1

(x̂Ex + ŷEy + ẑEz) · (−x̂) dy dz

= −Ex(1) ∆y∆z (127)

where we’ve assumed E(x) to be constant over the face and
equal to the value at the center of the face.
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Face 3

Face 1 Face 2

(x, y, z+D z)

(x, y+D y, z)

(x+D x, y, z)D y

D z

D x

n1^

n4^

n2^

n3^

y

x

z

E

E

E
Face 4

(x, y, z)

Figure 3-21

Figure 18: Flux lines of a vector field E passing through a differential
rectangular parallelepiped of volume ∆v = ∆x∆y∆z.
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• On face 2 we get
F2 = Ex(2) ∆y∆z (128)

• By using Taylor’s expansion, we can express (approximately)
the value on one face in terms of the other face value, i.e.

Ex(2) = Ex(1) +
∂Ex
∂x

∆x (129)

so that

F2 =

[
Ex(1) +

∂Ex
∂x

∆x

]
∆y∆z (130)

and

F1 + F2 =
∂Ex
∂x

∆x∆y∆z (131)

F3 + F4 =
∂Ey
∂y

∆x∆y∆z (132)

F5 + F6 =
∂Ez
∂z

∆x∆y∆z (133)
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• The grand total is then:∮
S

E · ds =

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)
∆x∆y∆z

= (div E)∆ν (134)

where ∆ν is the volume and div E is a differential function called
divergence of E and is defined as

div E =
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

(135)

• By using the usual trick of reducing the dimensions to zero, we
get divergence of E at a point

div E , lim
∆ν→0

∮
S

E · ds
∆ν

(136)

• In alternative notation,

∇ ·E , div E =
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

(137)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Vector Analysis 62

Interpretation: from,

div E , lim
∆ν→0

∮
S

E · ds
∆ν

(138)

the field E has positive divergence if the net flux out of surface S is
positive ⇒ some source of flux is present within the volume. If it is

negative ⇒ there is a sink present.

• If E is uniform ⇒ the same amount of flux enters and leaves ⇒
divergence is zero (divergenceless field).

• Divergence operates only on vectors and the result is scalar. It
can also be applied in cylindrical and spherical systems.

• Divergence is distributive

∇ · (E1 + E2) = ∇ ·E1 +∇ ·E2 (139)

• If ∇ ·E = 0 ⇒ solenoidal field.
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• Divergence theorem

Extending∮
S

E · ds =

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)
∆x∆y∆z

= (div E)∆ν (140)

from differential volume ∆ν to a volume integral,∫
ν

∇ ·Edν =

∮
S

E · ds (divergence theorem) (141)

which is known as the divergence theorem . The closed surface in
the integral on the right is the surface that bounds the volume that
is integrated over on the left.
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3.6. Curl of a vector field

So, why do we need yet another operator? There is an additional
property of fields called circulation , which is defined as a line integral
of the field around a closed contour.

Circulation =

∮
C

B · dl (142)

To illustrate, have a look at Fig. 19. For case a) we observe that
the circulation= 0, or mathematically,

Circulation =

∫ b

a

x̂B0 · x̂ dx+

∫ c

b

x̂B0 · ŷ dy

+

∫ d

c

x̂B0 · x̂ dx+

∫ a

d

x̂B0 · ŷ dy

= B0 ∆x−B0 ∆x = 0 (143)

where ∆x = b− a = c− d and recall, x̂ · ŷ = 0.
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D x D x

(a) Uniform field

(b) Azimuthal field

f r

C

f f f^

B

Current I

z

y

x

Figure 3-22

Figure 19: Circulation is zero for the uniform field in (a), but it is not
zero for the azimuthal field in (b).
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⇒ circulation of a uniform field is zero.
Case b) shows magnetic filed induced by current I (what is the

best coordinate system to use?). Field lines are concentric circles
around the current source.

B = φ̂
µ0I

2πr
(144)

Suppose we have a circular contour of radius r then the differential
length vector is dl = φ̂rdφ so that circulation of B around the contour
is

Circulation =

∮
C

B · dl

=

∫ 2π

0

φ̂
µ0I

2πr
· φ̂r dφ = µ0I (145)

• This circulation is not zero, but what about other contours?
Any contour in planes that are perpendicular to the x− y plane
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would have = 0 (because the differential length would not have
a φ component).

• Also, the direction of contour determines the sign of circulation

• The curl operator is used to describe the circulation of a vector
field. It is denoted as curl B or ∇×B.

∇×B = curl B , lim
4s→0

1

4s

[
n̂

∮
C

B · dl
]
max

(146)

• curl B is the circulation of B per unit area, with the area ∆s
of the contour C being oriented such that the circulation is
maximum.

• The direction of curl B is n̂, which is normal to ∆s using the
right hand rule.
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• So, how do we get something out of eq. 146? In Cartesian
coordinates,

B = x̂Bx + ŷBy + ẑBz (147)

we get (omitting the long derivation),

∇×B = x̂

(
∂Bz
∂y
− ∂By

∂z

)
+ ŷ

(
∂Bx
∂z
− ∂Bz

∂x

)
= + ẑ

(
∂By
∂x
− ∂Bx

∂y

)

=

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Bx By Bz

∣∣∣∣∣∣ (148)
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S

C

ds

n̂
ds = n ds^

d l

Figure 3-23
Figure 20: The direction of the unit vector x̂ is along the thumb when
the other four fingers of the right hand follow d l.
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• Vector identities involving curl

(1) ∇× (A + B) = ∇×A +∇×B (149)

(2) ∇ · (∇×A) = 0 for any vector A (150)

(3) ∇× (∇V ) = 0 for any scalar function V (151)

• Stoke’s theorem

Using this theorem we can convert the surface integral of the curl of
a vector over an open surface S into a line integral of the vector along
the contour C bounding the surface S.

∫
S

(∇×B) · ds =

∮
C

B · dl (Stokes’s theorem) (152)

If ∇×B = 0 the field is said to be conservative or irrotational
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3.7. Laplacian operator

Another combination of operators: divergence of a gradient of a scalar
(or vector). In Cartesian coordinates

∇V = x̂
∂V

∂x
+ ŷ

∂V

∂y
+ ẑ

∂V

∂z

= x̂Ax + ŷAy + ẑAz = A (153)

and divergence of it is

∇ · (∇V ) = ∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

=
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
(154)

and we call it Laplacian of V and is denoted by ∇2V

∇2V , ∇ · (∇V ) =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
(155)
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which is a scalar
We can also define a Laplacian of a vector

E = x̂Ex + ŷEy + ẑEz (156)

such that

∇2E =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
E

= x̂∇2Ex + ŷ∇2Ey + ẑ∇2Ez (157)

or, in Cartesian coordinates the Laplacian of a vector is a vector whose
components are equal to the Laplacians of the vector components.
The following also holds:

∇2E = ∇(∇ ·E)−∇× (∇×E) (158)
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