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2. Transmission lines

2.1. Transmission Lines: General Considerations

What is a transmission line? For us it will be a pair of wires (or
a waveguide) used to guide electromagnetic signals, e.g. telephone
wires, coaxial cables, optical fibers etc. Schematically, Fig. 1 presents
a transmission line as a two port circuit with input source and output
load connected. Various loads are possible.
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Figure 2-1

Figure 1: Transmission line as a black box.
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Figure 2: Transmission line in a circuit.

• Wavelength and transmission lines

Why didn’t we worry about transmission lines when studying basic
circuits? Check out Fig. 2: simple AC generator connected to R-C
load via a transmission line. Can we just take out the transmission
line? It depends...

• The generator sends a cosinusoidal signal VAA′ = Vg(t) = V0 cosωt.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Assume that the signal (current or voltage) travels with speed
of light in vacuum c = 3× 108 m/s

• How much is the signal delayed going from AA′ to BB′?

• If there are no ohmic losses

VBB′(t) = VAA′(t− l/c) = V0 cos[ω(t− l/c)](V) (1)

• Take a wire length of l = 5 cm . Set the time to t = 0 s. For
f = 1 kHz, this case gives VBB′ = 0.999 . . . V0, i.e. VBB′ and
VAA′ are indistinguishable.

• In the second case take l = 20km. This gives VBB′ = 0.91V0,
i.e. quite a difference between VBB′ and VAA′ .

• Where is this coming from? The term ωl/c. That can be re-
expressed using up = c (here) so c = fλ (m/s), so that

ωl

c
=

2πfl

c
= 2π

l

λ
radians (2)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• If l/λ is small ⇒ transmission line effects negligible

• If l/λ & 0.01 ⇒ transmission line effects must be considered

• In addition to time delay (shift), we also need to take into ac-
count reflections, power loss and dispersion.

• What’s dispersion? Wave velocity is not constant but is a func-
tion of frequency. Figure 3 shows dispersive effects. Could affect
operation of digital circuits (“signal integrity”).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 2-3

Figure 3: Transmission line as a source of distortion.
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• Propagation modes

Have a look at a few transmission lines in Fig. 4

• There are two basic types: TEM and higher order

• TEM = Transverse ElectroMagnetic lines. Electric and mag-
netic fields are transverse to the direction of propagation. Coax-
ial lines are one type. Microstrip not exactly TEM but can be
a close approximation to a TEM waveguide.

• Metalic waveguides (e.g. rectangular) and fiber optic lines are
typical for higher order transmission lines. These have at least
one component of the E or H field that points in the direction
of waveguide propagation.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 4: Various transmission lines.
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Figure 5: Details of coaxial transmission line.
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Figure 6: Equivalent circuit representation of a TEM transmission
line.

2.2. Lumped element model

We can represent TEM transmission lines of all kinds by a parallel
wire configuration as shown in Fig. 6. But how do we describe this
transmission lines model? The same figure is a starting point.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Transmission lines 12

Lumped element model:

• Represent the transmission line with equivalent lumped circuit,
i.e. one consisting of resisitive, inductive and capacitive (R, L
and C) components. Start by breaking into sections of length
∆z.

• The transmission line parameters in the sections are:

– R′ = resistance of both conductors per unit length Ω/m

– L′ = inductance of both conductors H/m,

– G′ = conductance of insulation medium S/m

– C ′ = capacitance of two conductors F/m

• The same model is applicable to all TEM-mode wave propaga-
tion transmission lines.

• Note that all parameters are in units/length (the prime is used
as a reminder that these are per unit length).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• The values for these parameters differ, depending on specifics of
the transmission line. For now, we have to accept these but we
will derive the expressions later on.

• The transmission line parameters for coaxial, two wire and par-
allel plate waveguides are in Table 2-1 from the book, where
µc, σc are magnetic permeability and conductivity of conduc-
tors, ε, µ, σ are electrical permittivity, magnetic permeability,
and electrical conductivity of insulation material between con-
ductors.

This is illustrated for coaxial line in Fig.7. Let’s have a look at
each transmission line parameters.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 7: Cross-section of coaxial transmission line.

• R′ is resistance of both inner and outer conductors.

R′ =
Rs
2π

(
1

a
+

1

b

)
(Ω/m) (3)

• The intrinsic resistance Rs is the surface resistance of conduc-
tors. Note the frequency dependence!

Rs =

√
πfµc
σc

(Ω) (4)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Transmission lines 15

• What happens when σc →∞?

• Rs → 0 and R′ → 0.

• For inductance per unit length we have

L′ =
µ

2π
ln

(
b

a

)
(H/m) (5)

• G′ is shunt conductance, i.e. current flowing between two con-
ductors.

G′ =
2πσ

ln(b/a)
(S/m) (6)

• What happens if we have perfect dielectric material? Then σ =
0 and therefore G′ = 0.

• C ′ is the capacitance between two conductors. In this case

C ′ =
2πε

ln(b/a)
(F/m) (7)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Not only coax, but all TEM lines have the following relations:

L′C ′ = µε,
G′

C ′
=
σ

ε
(8)

• If the insulating material between the conductors is air the
transmission line is called and air line (free space parameters
and σ = 0, G′ = 0).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 2-8Figure 8: ∆z section of a transmission line.

2.3. Transmission line equations

Now that we have an equivalent circuit (model) for transmission lines,
what do we do? Start with a segment shown in Fig. 8 and write some
Kirchhoff’s equations for voltages and currents.

• The voltage drop between nodes N and N + 1 gives the first

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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equation:

v(z, t)−R′∆z i(z, t)− L′∆z ∂i(z, t)
∂t

− v(z + ∆z, t) = 0 (9)

−v(z + ∆z, t)− v(z, t)

∆z
= R′ i(z, t) + L′

∂i(z, t)

∂t
(10)

• If we take the limit as ∆z → 0 this becomes a differential equa-
tion:

−∂v(z, t)

∂z
= R′i(z, t) + L′

∂i(z, t)

∂t
(11)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• The sum of the currents at node N + 1 gives the 2nd equation

i(z, t)− i(z + ∆z, t)− iG − iC = 0 (12)

Where the current in the resistor is (use Ohm’s law V = IR
where R = 1/G),

iG =
v(z + ∆z, t)

1/G′∆z
= G′∆z v(z + ∆z, t) (13)

For the capacitor, start with equation relating voltage, charge
and capacitance, V = Q/C or Q = CV ,

iC = C ′∆z
dv(z + ∆z, t)

dt
(14)

Rearrange and divide by ∆z,

i(z, t)−i(z+∆z, t)−G′∆z v(z+∆z, t)−C ′∆z ∂v(z + ∆z, t)

∂t
= 0

(15)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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− i(z + ∆z, t)− i(z, t)
∆z

= G′v(z+∆z, t)+C ′
∂v(z + ∆z, t)

∂t
(16)

and let ∆z approach zero, so we get a partial differential equa-
tion,

−∂i(z, t)
∂z

= G′v(z, t) + C ′
∂v(z, t)

∂t
(17)

(note, typo in book on page 55 should say Eq. 2.15 becomes the
second, first-order equation)

• These are transmission line equations a.k.a. telegrapher’s equa-
tions in the time domain:

−∂v(z, t)

∂z
= R′i(z, t) + L′

∂i(z, t)

∂t
(18)

−∂i(z, t)
∂z

= G′v(z, t) + C ′
∂v(z, t)

∂t
(19)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Further simplification is possible for sinusoidal sources,

v(z, t) = <
[
Ṽ (z)ejωt

]
(20)

i(z, t) = <
[
Ĩ(z)ejωt

]
. (21)

• In that case we have a single frequency (time harmonic) and can
go to phasor representation:

−∂v(z, t)

∂z
= R′i(z, t) +L′

∂i(z, t)

∂t
→ −dṼ (z)

dz
= (R′+ jωL′)Ĩ(z)

(22)

−∂i(z, t)
∂z

= G′v(z, t)+C ′
∂v(z, t)

∂t
→ −dĨ(z)

dz
= (G′+jωC ′)Ṽ (z)

(23)

These are equations 2.18a and 2.18b in the book.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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2.4. Wave propagation on a transmission line

We have the transmission line equations– how do we solve them?

• First combine two first-order coupled equations into two uncou-
pled second order equations. How? Take d/dz to get:

d

dz

dṼ (z)

dz
=

d

dz

[
(R′ + jωL′)Ĩ(z)

]
(24)

−d
2Ṽ (z)

dz2
= (R′ + jωL′)

dĨ(z)

dz
(25)

On RHS plug in:

−dĨ(z)

dz
= (G′ + jωC ′)Ṽ (z) (26)

d2Ṽ (z)

dz2
= (R′ + jωL′)(G′ + jωC ′)Ṽ (z) (27)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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d2Ṽ (z)

dz2
− (R′ + jωL′)(G′ + jωC ′)Ṽ (z) = 0 (28)

use γ =
√

(R′ + jωL′)(G′ + jωC ′) (29)

⇒ d2Ṽ (z)

dz2
− γ2Ṽ (z) = 0 (30)

• Same can be done for the current

d2Ĩ(z)

dz2
− γ2Ĩ(z) = 0 (31)

• These equations (30 and 31 ) are called wave equations.

• Parameter γ is called the complex propagation constant.
It consists of the real part α = attenuation constant, and
imaginary part β = phase constant

α = <(γ) = <
(√

(R′ + jωL′)(G′ + jωC ′)
)

(Np/m) (32)

β = =(γ) = =
(√

(R′ + jωL′)(G′ + jωC ′)
)

(rad/m) (33)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Note that we’ve assumed α and β to be positive. This will turn
out to be a necessity for a propagating wave with possibly some
decay.

We still don’t have a solution, but with equations in the form

d2Ṽ (z)

dz2
− γ2Ṽ (z) = 0 (34)

d2Ĩ(z)

dz2
− γ2Ĩ(z) = 0 (35)

it is easy to see (how?) that the solutions will be exponentials like,

Ṽ (z) = V0e
γz (36)

But, we can also have a solution with a negative exponent,

Ṽ (z) = V0e
−γz (37)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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So, we can have a total solution that contains both. We use the
superscripts + and − on the amplitude to denote waves going in the
positive and negative z directions. The solution then looks like:

Ṽ (z) = V +
0 e−γz + V −0 eγz (38)

Ĩ(z) = I+
0 e
−γz + I−0 e

γz (39)

• Each term represents a wave, so that we have two waves, but
going in opposite directions!

• Convention has it that e−γz is a wave in +z direction

• Still no solution; how many unknowns?

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• We can take the derivative of,

Ṽ (z) = V +
0 e−γz + V −0 eγz (40)

dṼ (z)

dz
= −γV +

0 e−γz + γV −0 eγz (41)

−dṼ (z)

dz
= γ

[
V +

0 e−γz − V −0 eγz
]

(42)

and plug into,

−dṼ (z)

dz
= (R′ + jωL′)Ĩ(z) (43)

γ
[
V +

0 e−γz − V −0 eγz
]

= (R′ + jωL′)Ĩ(z) (44)

Ĩ(z) =
γ

R′ + jωL′
[
V +

0 e−γz − V −0 eγz
]

(45)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Does this look familiar? Compare each of the terms of,

Ĩ(z) =
γ

R′ + jωL′
[
V +

0 e−γz − V −0 eγz
]

(46)

with,
Ĩ(z) = I+

0 e
−γz + I−0 e

γz (47)

And we can see that,

I+
0 =

γV +
0

R′ + jωL′
(48)

or,
V +

0

I+
0

=
R′ + jωL′

γ
= Z0. (49)

Similarly,
−V −0
I−0

=
R′ + jωL′

γ
= Z0. (50)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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That is,
V +

0

I+
0

= Z0 =
−V −0
I−0

(51)

• The parameter Z0 is the characteristic impedance of the trans-

mission line, and is given by (recalling the definition of γ),

γ =
√

(R′ + jωL′)(G′ + jωC ′) (52)

Z0 =
R′ + jωL′

γ
=

√
R′ + jωL′

G′ + jωC ′
(Ω) (53)

• An important point is that Z0 is the ratio of the voltage and
current amplitudes for each of the propagating waves separately.
The total voltage Ṽ (z) is the sum of the two waves traveling
in opposite directions. Therefore, Z0 is not the ratio of the total
voltage and current.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Note that V +
0 and V −0 are complex numbers, so each has a

magnitude and phase, i.e. V +
0 = |V +

0 |ejφ
+

, V −0 = |V −0 |ejφ
−

• With the boundary conditions we will be able to solve for the
voltage along the transmission line in the phasor domain. Re-
member the process for returning back to the time domain.

– multiply phasor solution by ejωt

– take the real part

• The time domain solution will have the form

v(z, t) = <
[[
V +

0 e−γz + V −0 eγz
]
ejωt

]
(54)

<
[
|V +

0 |ejφ
+

e−(α+jβ)zejωt + |V −0 |ejφ
−
e(α+jβ)zejωt

]
(55)

Rearrange a little,

<
[
|V +

0 |e−αzej(ωt−βz+φ
+) + |V −0 |eαzej(ωt+βz+φ

−)
]

(56)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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v(z, t) = |V +
0 |e−αz cos(ωt−βz+φ+)+|V −0 |eαz cos(ωt+βz+φ−)

(57)

• From before, the first term is +z traveling wave (why?), while
the 2nd one is −z traveling.

• What is the phase (propagation) velocity?

up = fλ =
ω

β
(58)

• Important realization: waves traveling in opposite directions on
transmission lines form standing waves !

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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2.5. The lossless microstrip line

• The microstrip line is a type of transmission line for RF and
microwave circuits.

• Microwave circuits are found in many applications including cel-
lular communications, wireless networking, satellite communica-
tions and radar.

• These transmission lines are easy to fabricate on a circuit board
consisting of just a thin copper strip printed on a dielectric sub-
strate that is over a ground plane.

• It is similar to a parallel plate waveguide that supports TEM
modes but since it has limited dimensions is only approximately
TEM or quasi-TEM.

• There are two geometric parameters- the width of the strip w
and the height (thickness) of the dielectric layer h.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• The thickness of the strip is neglected because it is generally
much smaller than w.

• We assume the substrate is a perfect dielectric σ = 0.

• We assume the strip and ground plane are perfect conductors
σ ≈ ∞.

• These approximations and assumptions simplify the analysis
quite a bit but do not introduce significant error.

• The three parameters that will determine the characteristics of
the transmission line are w, h and ε.

• With these assumptions the phase speed of the wave is given by,

up =
c
√
εr

(59)

with εr the relative permittivity and c the speed of light in free
space.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Even though the electric field is mostly in the dielectric sub-
strate, some is in the surrounding air. This mixture of where
the electric field is can be accounted for by using an effective
permittivity εeff which leads to,

up =
c
√
εeff

(60)

• Getting the exact effective permittivity gives a complicated ex-
pression but we can get a good approximation by curve fitting
to this,

εeff =
εr + 1

2
+

(
εr − 1

2

)(
1 +

10

s

)−xy
(61)

where s = w
h and,

x = 0.56

[
εr − 0.9

εr + 3

]0.05

(62)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Transmission lines 34

y = 1+0.02 ln

(
s4 + 3.7× 10−4s2

s4 + 0.43

)
+0.05 ln

(
1 + 1.7× 10−4s3

)
(63)

• The characteristic impedance is given by,

Z0 =
60
√
εeff

ln

[
6 + (2π − 6)e−t

s
+

√
1 +

4

s2

]
(64)

with

t =

(
30.67

s

)0.75

(65)

• The figure shows the relationship between Z0 and s for various
dielectric materials.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 9: Plots of Z0 as a function of s for various dielectric materials.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• The various line parameters are:

R′ = 0 (σc =∞) (66)

G′ = 0 (σ = 0) (67)

C ′ =

√
εeff

Z0c
(68)

L′ = Z2
0C
′ (69)

α = 0 (R′ = G′ = 0) (70)

β =
ω

c

√
εeff (71)

• The expressions given allow us to determine Z0 if we are given
the dimensions and material of the microstrip transmission line
(i.e, εr, h and w).
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• But, to design a microstrip for a desired Z0 is more difficult. So,
a family of curves are generated so that s can be estimated from
a given Z0. We get two expressions for different Z0 regions and
assume εr is given (typical values range from 2 to 15),

• For Z0 ≤ (44− 2εr) Ω,

s =
w

h
(72)

s =
2

π

[
(q − 1)− ln(2q − 1) +

εr − 1

2εr

[
ln(q − 1) + 0.29− 0.52

εr

]]
(73)

with

q =
60π2

Z0
√
εr

(74)
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• For Z0 ≥ (44− 2εr) Ω,

s =
8ep

e2p − 2
(75)

with,

p =

√
εr + 1

2

Z0

60
+

[
εr − 1

εr + 1

] [
0.23 +

0.12

εr

]
(76)
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Microstrip Line Example: What is the width of the copper strip
for a microstrip line with Z0 = 50 Ω, and 0.5 mm thick sapphire
substrate with εr = 9?
Solution: 44 − 2εr = 44 − 2 × 9 = 44 − 18 = 26 Ω (note, typo in
book), so Z0 = 50 is greater than this so we use,

p =

√
εr + 1

2

Z0

60
+

[
εr − 1

εr + 1

] [
0.23 +

0.12

εr

]
(77)

when we plug in the numbers we get p = 2.06. We then get

s =
w

h
=

8ep

e2p − 2
= 1.056 (78)

So, w = sh = 1.056 × 0.5 mm = 0.53 mm. We can check by using
s = 1.056 and εr = 9 and plug into

Z0 =
60
√
εeff

ln

[
6 + (2π − 6)e−1

s
+

√
1 +

4

s2

]
(79)

along with the other necessary equations and this gives Z0 = 49.93 Ω.
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2.6. Lossless transmission line

The most general case is a bit too complicated, so let’s make some
(very good) approximations:

• Use a conductor (wires) with low resistance; this minimizes
ohmic losses so that R′ � ωL′.

• Use a very good dielectric between the conductors, so that G′ �
ωC ′

• R′ ≈ 0 and G
′ ≈ 0 results in (lossless case α = 0):

γ = α+ jβ = 0 + jω
√
L′C ′ (80)

• And β = ω
√
L′C ′
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• This significantly simplifies the expression for characteristic
impedance

Z0 =

√
R′ + jωL′

G′ + jωC ′
=

√
L′

C ′
(Ω) (81)

Z0 =

√
L′

C ′
(Ω) (82)

• What do you notice about the simplified equation relative to
the original?

• Other quantities can now also be expressed in a simple form

λ =
2π

β
=

2π

ω
√
L′C ′

, up =
ω

β
=

1√
L′C ′

(83)

• Using the relationship, up = 1√
µε ,

β = ω
√
µε (rad/m) (84)
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• Typical materials for transmission lines will have permeability
µ = µ0 = 4π × 10−7 H/m, while permittivity is given via
relative permittivity εr = ε/ε0. Free space permittivity ε0 =
8.854× 10−12 F/m.

• Some simple manipulations leads to

up =
c
√
εr
⇒ λ =

up
f

=
c

f

1
√
εr

=
λ0√
εr

(85)

One more property of transmission lines: dispersive or not? If the
phase velocity is independent of frequency ⇒ medium is nondisper-
sive. Lossless TEM lines are of this type. Why do we care? It gets to
the signal integrity issues and how faithfully is the shape of the signal
preserved (fig. 2).

Summary of several cases of transmission lines is given in table
2.2.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Transmission lines 43

• Voltage reflection coefficient

After all this, we still don’t know the voltage! Actually, to solve eqs.
87 we need a full circuit, as presented in fig. 10.

Ṽ (z) = V +
0 e−γz + V −0 eγz (86)

Ĩ(z) = I+
0 e
−γz + I−0 e

γz (87)

Remember that for lossless lines γ = jβ. Set up coordinate system
so that z = 0 at the load end and z = −l at the generator end.

• We know that at the load

ZL = ṼL/ĨL (88)

This has nothing to do with the waves!

• Now we make a connection with the wave picture:

ṼL = Ṽ (z = 0) = V +
0 + V −0 , ĨL = Ĩ(z = 0) =

V +
0

Z0
− V −0
Z0

(89)
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Figure 2-9
Figure 10: Transmission line connected to a general load and genera-
tor.

• Plug this into eq. 88

⇒ ZL =

(
V +

0 + V −0
V +

0 − V
−
0

)
Z0 ⇒ V −0 =

(
ZL − Z0

ZL + Z0

)
V +

0 (90)

• Very interesting result: the ratio of incident and reflected wave
at the load depends only on the load impedance ZL and char-
acteristic impedance Z0!
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• This we call voltage reflection coefficient

Γ =
V −0
V +

0

=
ZL − Z0

ZL + Z0
=
ZL/Z0 − 1

ZL/Z0 + 1
(91)

• Similarly, for current waves

I−0
I+
0

= −V
−
0

V +
0

= −Γ (92)

• Note that Γ is a complex number! Z0 may be real (for lossless
lines), but ZL is generally complex.

⇒ Γ = |Γ|ejΘr (93)

• For passive loads |Γ| ≤ 1

• The load is considered matched if ZL = Z0 ⇒ no reflection at
the load ⇒ V −0 = 0
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CL

RL 50 W
Z0 = 100 W

10 pF

A

A'

Transmission line

Figure 2-10Figure 11: Transmission line for example 2-3.

• Open-circuit (O-C) load ⇒ Γ = 1, V −0 = V +
0 .

• Short-circuit (S-C) load ⇒ Γ = −1, V −0 = −V +
0
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• Standing waves

We are making progress, but we still don’t have a full solution! We’ve
made it this far:

Ṽ (z) = V +
0 (e−jβz + Γejβz), Ĩ(z) =

V +
0

Z0
(e−jβz − Γejβz) (94)

(What is the unknown?)

• Let’s do a little bit more examination by looking at the magni-
tude of Ṽ (z).

• After some manipulation

|Ṽ (z)| = |V +
0 |
[
1 + |Γ|2 + 2|Γ| cos(2βz + Θr)

]1/2
(95)

and similarly for |Ĩ(z)|.

• Fig. 12 shows these magnitudes vs. position z, given the circuit
parameters.
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Figure 12: Standing voltage (Ṽ ) and current (Ĩ) waves. Z0 = 50Ω,
Γ = 0.3ej30◦ , |V +

0 | = 1
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• If we substitute in a position −d on our transmission line we
have,

|Ṽ (z)| = |V +
0 |
[
1 + |Γ|2 + 2|Γ| cos(−2βd+ Θr)

]1/2
(96)

|Ṽ (z)| = |V +
0 |
[
1 + |Γ|2 + 2|Γ| cos(2βd−Θr)

]1/2
(97)

Some observations:

• The magnitudes show a sinusoidal pattern, which is caused by
interference of two waves,

• This pattern is called standing wave ,

• The maximum of the standing wave pattern happens when in-
cident and reflected waves are in phase, i.e. the argument of the
cosine term, 2βd − Θr = 2nπ. In this case, magnitude of total
voltage is (1 + |Γ|)|V +

0 |.
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• Conversely, if the traveling waves are out of phase, we have a
minimum. This happens at 2βd−Θr = (2n+ 1)π, and magni-
tude is (1− |Γ|)|V +

0 |.

• Standing wave pattern repeats every λ/2 , where λ is associ-

ated with the traveling waves.

• Note that fig. 12 is vs. coordinate z, i.e. there is no time
dependence, which is OK since we are looking at magnitudes
(or amplitudes) only.

• What happens if we fix the position and look at time? Voltage
has a cosωt variation.

• Interestingly, current and voltage are in opposition; when volt-
age peaks, current has a minimum and vice versa. This is a
consequence of a minus sign in eq. 94.

There are three other special cases: matched load, O-C and S-C,
which are shown in fig. 13.
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Figure 2-12Figure 13: Standing waves for matched load, S-C and O-C.
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• The matched load⇒ |Γ| = 0⇒ |Ṽ (z)| = |V +
0 |, i.e. without any

reflected waves there can be no interference⇒ no standing waves .

• S-C and O-C cases have |Γ| = 1, or Γ = −1 for S-C and Γ = 1
for O-C.

• S-C and O-C have the same maximum value: 2|V +
0 |, and mini-

mum value of zero. Their patterns are shifted by λ/4.

• The first voltage minimum is at z = 0 for S-C, while O-C has
first maximum at z = 0; why?
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What about a general expression for the position of the first max-
imum (or minimum)? We’ve already seen that when

2βdmax − θr = 2nπ ⇒ |Ṽ |max = |V +
0 |[1 + |Γ|] (98)

with n=0 or a positive integer. So, what’s dmax?

dmax =
θr + 2nπ

2β
=
θrλ

4π
+
nλ

2
(99)

where n = 1, 2, . . . if θr < 0, and n = 0, 1, 2 . . . if θr ≥ 0.

• θr is bounded by −π and π,

• When θr ≥ 0 the first dmax = θrλ/4π, otherwise it occurs at
dmax = (θrλ/4π) + λ/2.

• Maximum of voltage standing wave is also where current stand-
ing wave has a minimum!
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• Derivation of positions for minima is analogous and yields

|Ṽ |min = |V +
0 |[1− |Γ|], for (2βdmin − θr) = (2n+ 1)π (100)

and the first minimum occurs for n = 0.

• Spacing between dmax and dmin is λ/4 ⇒ no need to calculate
minima separately:

dmin = dmax + λ/4, if dmax < λ/4

dmin = dmax − λ/4, if dmax ≥ λ/4 (101)

• Finally, the ratio |Ṽmax|/|Ṽmin| is the

voltage standing wave ratio S, aka SWR or VSWR:

S =
|Ṽmax|
|Ṽmin|

=
1 + |Γ|
1− |Γ|

(102)
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Figure 14: Slotted coaxial line.

2.7. Input Impedance

We’ve learned a lot without actually solving our original equations

• We understand that the voltage and current magnitudes are
oscillatory with position on the line and are out of phase with
each other.

• Since impedance is the ratio of voltage to current, we can talk
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about the input impedance which is,

Z(d) =
Ṽ (d)

Ĩ(d)
(103)

• Substitute the solution we found for Ṽ (z) and Ĩ(z)

Z(d) =
Ṽ (d)

Ĩ(d)
=
V +

0

[
ejβd + Γe−jβd

]
V +

0 [ejβd − Γe−jβd]
Z0 = Z0

1 + Γe−j2βd

1− Γe−j2βd

(104)

• Where we can define, Γd = Γe−j2βd = |Γ|ej(θr−2βd). Note the
book also uses Γl which is just when d = l at the end of the line.

• Do not confuse Z with Z0! The former is ratio of total volt-
age and current, while the latter is the ratio of the individual
traveling wave components! Remember that any point total

voltage (or current) is a sum of the traveling components!
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• Note that, if d = l we are at a position at the input (at the
source) of the transmission line. We can define that as the input
impedance,

Zin(l) = Z0
1 + Γe−j2βl

1− Γe−j2βl
= Z0

1 + Γl
1− Γl

(105)

can be calculated for a known load impedance and properties of
the transmission line.

Γl = Γe−j2βl = |Γ|ej(θr−2βl) (106)
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• Since we know how to calculate Γ,

Γ =
ZL − Z0

ZL + Z0
(107)

We can use what we found earlier

Z(d) = Z0

[
ejβd + Γe−jβd

]
[ejβd − Γe−jβd]

(108)

and we can substitute,

ejβl = cosβl + j sinβl (109)

e−jβl = cosβl − j sinβl (110)

With some manipulations we can get to,

Zin = Z0
ZL cosβl + jZ0 sinβl

Z0 cosβl + jZL sinβl
(111)
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Zin = Z0
ZL + jZ0 tanβl

Z0 + jZL tanβl
(112)

We can also use the normalized load impedance,

zL =
ZL
Z0

(113)

Zin = Z0
zL + j tanβl

1 + jzL tanβl
(114)

We can finally solve for the voltage. This is where the “circuit”
and “wave” approaches meet.

• We have basically solved for the impedance of the transmission
line and if we are at the source with the load ZL we have Zin
(as in fig. 15) so we can replace everything to the right of the
source with Zin.
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Figure 2-14Figure 15: Input impedance of transmission line + load.
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• Once the transmission line and load are replaced by Zin, finding
voltage at the input of transmission line is easy:

Ĩi =
Ṽg

Zg + Zin
(115)

The voltage across Zin is then,

Ṽi = ĨiZin =
ṼgZin

Zg + Zin
(116)

and this is the situation from the standpoint of the source (“cir-
cuit” picture)

• From the transmission line, we solved for the voltage as the sum
of the two waves:

Ṽi = Ṽ (−l) = V +
0 [ejβl + Γe−jβl] (117)
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• Clearly, the two results must give one and the same voltage so
we can equate the two,

ṼgZin
Zg + Zin

= V +
0 [ejβl + Γe−jβl] (118)

And, solve for the unknown V +
0 ,

V +
0 =

(
ṼgZin

Zg + Zin

)(
1

ejβl + Γe−jβl

)
(119)

⇒ and we have our solution!
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2.8. Special Cases

Here we’ll have a closer look at some special transmission lines: Short-
Circuited, Open Circuited, Matched Lines, λ/2 lines and λ/4 lines.

• Short-circuited line

Now that we know how to calculate Zin, let’s have a look at the
short-circuited case. That corresponds to ZL = 0 so we can easily
calculate Γ:

Γ =
ZL − Z0

ZL + Z0
=
−Z0

Z0
= −1 (120)

The standing wave ratio is given by,

S =
1 + |Γ|
1− |Γ|

=∞ (121)
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• Voltage and current variation with z can easily be obtained using

Ṽ (d) = V +
0 [ejβd + Γe−jβd] (122)

Ĩ(d) =
V +

0

Z0
[ejβd − Γe−jβd] (123)

Ṽsc(d) = V +
0 [ejβd − e−jβd] = 2jV +

0 sinβd (124)

Ĩsc(d) =
V +

0

Z0
[ejβd + e−jβd] =

2V +
0

Z0
cosβd (125)

and is shown in fig. 16. Note the locations of maxima and
minima.

• Voltage is zero at the load (d = 0) as it should be for short
circuit.

• What about input impedance? For a line of length l,

Zscin =
Ṽsc(l)

Ĩsc(l)
= jZ0 tanβl (126)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Transmission lines 65

which is shown if fig. 16.

• Very interesting: Short circuit transmission line has an impedance
that is purely reactive (no real part), when (using now length
of line l), tanβl > 0 line appears inductive; opposite case ⇒
capacitive.

• Say we set up an inductor with the same inductance (tanβl >
0), i.e.
jωLeq = jZ0 tanβl

→ Leq =
Z0 tanβl

ω
(H) (127)

• If Z0 is fixed, then the only variable is length l, and the minimum
length to obtain inductance Leq is

l =
1

β
tan−1

(
ωLeq
Z0

)
(m) (128)
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• What if tanβl < 0? Then, the short-circuit transmission line
appears capacitive, and the equivalent capacitance is

1

jωCeq
= jZ0 tanβl (F) (129)

Ceq = − 1

Z0ω tanβl
(F) (130)

• Since βl is a positive number, the first place we can get a nega-
tive number (on the tan curve) is when βl = π/2 and continues
negative until βl = π. To find the minimum l for capacitive
short-circuit transmission line,

−1

CeqZ0ω
= tanβl (131)
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βl = − tan−1

(
1

ωCeqZ0

)
(132)

since tan−1(−θ) = − tan−1(θ). But, this would give us a nega-
tive number. Remember though that the tan curve repeats itself
every π so the minimum value for l would be the above plus π:

βl = π − tan−1

(
1

ωCeqZ0

)
(m) (133)

l =
1

β

[
π − tan−1

(
1

ωCeqZ0

)]
(m) (134)

• This means that depending on our choice for l the short circuit
line can be a substitute for capacitors or inductors.
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Figure 17: Short-circuit transmission line as equivalent capacitor.
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• Open-circuited line

Situation is analogous to the short-circuit case. For ZL =∞, we have
Γ = 1 and voltage and current,

Ṽ (z) = V +
0 [e−jβz + Γejβz] (135)

Ĩ(z) =
V +

0

Z0
[e−jβz − Γejβz] (136)

Ṽoc(d) = V +
0 [ejβd + e−jβd] = 2V +

0 cosβd (137)

Ĩoc(d) =
V +

0

Z0
[ejβd − e−jβd] =

2jV +
0

Z0
sinβd (138)

Input impedance is again the ratio (when d = l),

Zocin =
Ṽoc(l)

Ĩoc(l)
= −jZ0 cotβl (139)
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Figure 18: Input impedance of a O-C transmission line.
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• Application of short-circuit and open-circuit measurements

If we measure a transmission line (we can use a network analyzer) that
is short circuited and get Zsc and then measure again open circuit we
get Zoc, we can combine to determine the characteristic impedance
Z0 and β.

• The product of impedances is,

ZocinZ
sc
in = −jZ0 cotβljZ0 tanβl = Z2

0 (140)

so,
Z0 =

√
ZocinZ

sc
in (141)

Similarly, take the ratio,

Zscin
Zocin

=
jZ0 tanβl

−jZ0 cotβl
= − tan2 βl (142)

tanβl =

√
−Z

sc
in

Zocin
(143)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• One-half wavelength lines

The main point about this line is that multiples of λ/2 lengths

do nothing in terms of input impedance!

• If l = nλ/2 then

tanβl = tan[(2π/λ)(nλ/2)] = tannπ = 0 (144)

• Recall, the input impedance,

Zin = Z0
ZL + jZ0 tanβl

Z0 + jZL tanβl
(145)

so,
⇒ Zin = ZL for l = nλ/2 (146)

• ⇒ Generator connected to ZL via a transmission line that is
multiple of λ/2 long induces in the load same currents and volt-
ages as if the transmission line were not there.

• Remember that this is valid at only one frequency!.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Quarter wave transformer

When transmission line length l = λ/4 (or = λ/4 + nλ/2), we have
another interesting case:

• βl = (2π/λ)× (λ/4) = π/2 so tanβl→∞

• Recall, the input impedance,

Zin = Z0
ZL + jZ0 tanβl

Z0 + jZL tanβl
(147)

• so that

Zin =
Z2

0

ZL
, for l = λ/4 + nλ/2 (148)

• How is this useful?

Illustrate usefulness of the quarter-wave transformer with an ex-
ample in fig. 19.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Z01 = 50 W ZL = 100 WZin Z02

A

A’
l /4

l /4 transformer
Feedline

Figure 2-18

Figure 19: Circuit for example 2-10.
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• Matched line

In this case ZL = Z0

• Zin = Z0

• Γ = 0

• All incident power at the input is delivered to the load, inde-
pendent of the line length

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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2.9. Power flow

So far we’ve only analyzed transmission lines in terms of voltages and
currents. There is an alternative point of view, based on power flow
on the transmission lines that can be quite useful.

• Remember the expressions for voltage and current on transmis-
sion line:

Ṽ (z) = V +
0

(
e−jβz + Γejβz

)
(149)

Ĩ(z) =
V +

0

Z0
[e−jβz − Γejβz] (150)

• We will substitute in z = −d as we have done before,

Ṽ (d) = V +
0

(
ejβd + Γe−jβd

)
(151)

Ĩ(d) =
V +

0

Z0
[ejβd − Γe−jβd] (152)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• At the load z = 0 and things simplify and we can write in
terms of incident and reflected waves: Ṽ i = V +

0 , Ṽ r = ΓV +
0 ,

Ĩi = V +
0 /Z0 and Ĩr = −ΓV +

0 /Z0.

• How do we find power if we know voltage and current? Two
ways to get the answer: in time or phasor domain.

• Instantaneous incident power at the load (d = 0) is easy to find:

P i(0, t) = vi(0, t) · ii(0, t) =
|V +

0 |2

Z0
cos2(ωt+ φ+) (W) (153)

• What about the reflected power at the load?

P r(0, t) = vr(0, t) · ir(0, t) = −|Γ|2 |V
+
0 |2

Z0
cos2(ωt+φ+ +θr) (W)

(154)

• Note, book includes more general equations for power at location
z = −d but we can obtain the same power results by setting
d = 0.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• More interesting than the instantaneous power is the time-average
power, which can be obtained from

Pav =
1

T

∫ T

0

P (t)dt =
ω

2π

∫ 2π/ω

0

P (t)dt (155)

• We can use the identity,

cos2 x =
1

2
(1 + cos 2x) (156)

And, remember that the integral of cosωt over a period is 0,
that is, ∫ T

0

cosωtdt = 0 (157)

• Expanding the incident power out,

P i(0, t) =
|V +

0 |2

Z0
(1/2 + 1/2 cos(2ωt+ 2φ+)) (W) (158)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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so we have

P iav =
1

T

∫ T

0

P i(t)dt =
|V +

0 |2

2Z0
(159)

• The reflected power is found similarly, so we have the incident
and reflected average power (in Watts),

P iav =
|V +

0 |2

2Z0
(W) (160)

P rav = −|Γ|2 |V
+
0 |2

2Z0
= −|Γ|2P iav (161)

−P
r
av

P iav
= |Γ|2 (162)

• This is an important result: the ratio of the reflected and inci-
dent powers at the load give the reflection coefficient magnitude
squared, or that the reflected power at the load is equal to the
incident power reduced by |Γ|2 term.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Transmission lines 81

• The net average power delivered to the load is a sum of the in-
cident and reflected powers:

Pav = P iav + P rav =
|V +

0 |2

2Z0

[
1− |Γ|2

]
(W) (163)

• Note, that we could have done the same thing (even easier) using
a phasor representation.

• The starting point for that is the average power relationship
which is,

Pav =
1

2
<
[
Ṽ · Ĩ∗

]
(164)

• But, starting with that we still end up with,

Pav =
|V +

0 |2

2Z0

[
1− |Γ|2

]
(W) (165)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 20: Power flows on a transmission line.
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Figure 2-28

Figure 21: Illustration of matching to transmission line.

2.10. Smith Chart

We won’t cover Smith Charts this term.

2.11. Impedance matching

Transmission lines are not just a nuisance that has to be taken into
account. We can use them for transforming impedance. Why? Typi-
cally, to ensure the best power transfer.

• See Fig. 21 for circuit setup.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Best case: have a load such that ZL = Z0. Usually not possible.

• What else? Place impedance matching network between the
load and transmission line.

• Work with admittances (why?).

• The load admittance is YL, the line admittance Y0 and the shunt
admittance is Ys.

• A the point MM ′, the admittance of the line to the right is Yd
(includes the length d of line and the load).

• So, the input impedance at a point just to the left of MM ′ is
the sum,

Yin = Yd + Ys (166)

• Generally, Yd is complex but Ys will be purely imaginary be-
cause we will attach something purely reactive like a capacitor
or inductor.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• So,

Yin = (Gd + jBd) + jBs = Gd + j(Bd +Bs) (167)

• Or, the normalized form,

yin = gd + j(bd + bs) (168)

• To have the line matched, we want zin = 1 (because Γ = 0
for matched line so we have Zin = Z0) and therefore yin = 1.
So that requires, gd = 1 and bd + bs = 0. So, we have two
conditions,

gd = 1, bd = −bs (169)

• We have two conditions to satisfy so we have two degrees of free-
dom. We will use the parameter d (length of line from the load
where we attach shunt element) to satisfy the gd = 1 condition.
We will use an appropriate capacitor or inductor to satisfy the
bd = −bs condition.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• To see how to get gd = 1, we have to do some more manipula-
tions.

Γ =
1− yL
1 + yL

(170)

and,

yd =
1− Γe−j2βd

1 + Γe−j2βd
=

1− |Γ|ej(θr−2βd)

1 + |Γ|ej(θr−2βd)
(171)

• We can use Eulers and do some further manipulations to get
the real and imaginary parts,

gd =
1− |Γ|2

1 + |Γ|2 + 2|Γ| cos(θr − 2βd)
(172)

and,

bd =
−2|Γ| sin(θr − 2βd)

1 + |Γ|2 + 2|Γ| cos(θr − 2βd)
(173)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• We can see from gd that if we want to make that 1 we have to
have,

cos(θr − 2βd) = −|Γ| (174)

• That will give us a denominator,

1 + |Γ|2 − 2|Γ|2 = 1− |Γ|2 (175)

• So that, we would have,

gd =
1− |Γ|2

1 + |Γ|2 + 2|Γ| cos(θr − 2βd)
=

1− |Γ|2

1 + |Γ|2 − 2|Γ|2
= 1

(176)

• So, for the condition,

cos(θr − 2βd) = −|Γ| (177)

we have to adjust d since that is all we have control over. So,
we select a d to do the above.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Once we fix d, then we have to calculate what bd is and then
add our shunt element so that bs = −bd.

• Many different ways to accomplish matching. We could add a
capacitor or inductor, or we can use transmission lines in an
arrangement called “single stub”, illustrated in Fig. 22. (Re-
member a transmission line can be the same as an inductor or
capacitor).

• To satisfy both our two degrees of freedom we have two lengths;
d and the length of a “stub” l placed in shunt. Stub is either
S-C or O-C.

• The procedure:

1. Convert ZL to YL

2. Select a distance d so as to transform the load admittance
YL into Yd = Y0 + jB (i.e. so that yL = 1 looking into
MM

′
before adding the stub).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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3. Add shunt stub (O-C or S-C) with Ys = −jB so that total
admittance looking into MM

′
(with stub) is Yin = Y0 +

jB − jB = Y0, as needed!

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 22: Impedance matching using shorted-stub.
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2.12. Transients on Transmission lines

Everything we’ve done so far was frequency-centric. Also, largely ap-
plicable only to narrowband signals. What do we do with wideband
applications? For that we need the transient response of the trans-
mission line network.

• Start with a single pulse of amplitude V0 and duration τ .

• Decompose it into two step functions:

V (t) = V1(t) + V2(t) = V0U(t)− V0U(t− τ) (178)

where U(t) is a unit step function. Illustrated in fig. 23.

• Why bother? If we know what happens to a step response we
can figure out pulse responses!

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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V(t)

V0

t
t

V(t)

V1(t) = V0 U(t)

V2(t) = V0 U(t - t )

V0

t t

(a)  Pulse of duration t (b)  V(t) = V1(t) + V2(t)

Figure 2-32

Figure 23: Rectangular pulse as a sum of two step functions.

• Transient response

For a transient response we need to include switches. A typical setup
is presented in Fig. 24: DC source, switch, transmission line and load.
Here, ZL = R ⇒ all impedances are real.

• Close the switch at t = 0. What’s the impedance the source
“sees?”

• The voltage V1 is now an initial condition, and is given in Fig. 24.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 2-33Figure 24: The transmission line immediately after turn-on.
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• How do we get the current?

I+
1 =

Vg
Rg + Z0

(179)

V +
1 =

VgZ0

Rg + Z0
(180)

• I+
1 , V

+
1 are waves that start traveling down the transmission

line. At what velocity? Note: + sign indicates travel in the
positive z direction. Note also that we have switched from the
previous convention of z = 0 at the load to here, z = 0 at the
generator (more convenient this way).

• A “snapshot” of the voltage and current along transmission line,
at three different times is shown in Fig. 25. Note: Rg = 4Z0

and ZL = 2Z0.

• At first V +
1 traverses transmission line, then it “hits” the load

at t = T (T = l/up). What happens? If ZL 6= Z0 we have a

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 25: Time evolution of voltage and current on transmission line.
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reflection.

V −1 = ΓLV
+
1 and ΓL =

ZL − Z0

ZL + Z0
=

1

3
(181)

• Once we hit the load, we get the negative z traveling wave
and we sum the forward and backward traveling waves. V −1
traverses the transmission line from the load to the generator
(source) and when it is half way there — take another snapshot.

• What happens once V −1 reaches the generator end (at what
time?)? If Zg 6= Z0 ⇒ another reflection!

V +
2 = ΓgV

−
1 = ΓgΓLV

+
1 , where Γg =

Rg − Z0

Rg + Z0
= 0.6 (182)

• V +
2 starts its travel from the source to the load and the total

voltage is a sum of three components. Take snapshot half way

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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(t = 5T/2).

V (z,
5T

2
) = (1 + ΓL + ΓLΓg)V

+
1︸ ︷︷ ︸

0≤z<l/2

, V (z,
5T

2
) = (1 + ΓL)V +

1︸ ︷︷ ︸
l/2≤z≤l

(183)

• Clearly this will go on for a while . . .

• What about the current? The procedure the same, but the
reflection coefficients come with a negative sign:

I−1 = −ΓLI
+
1 , I+

2 = −ΓgI
−
1 = ΓgΓLI

+
1 (184)

• Is there a limit to this? In eq. 183 we keep adding up compo-
nents that are products of ΓnLΓn,n−1

g . This infinite series has a
limit

1 + x+ x2 + . . . =
1

1− x
for |x| < 1. (185)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Transmission lines 98

• Net result: we can calculate lim∞ V

V∞ = V +
1

1 + ΓL
1− ΓgΓL

(186)

• After using expressions for V +
1 (eq. 179), ΓL (eq. 181), and Γg

(eq. 182) ⇒

V∞ =
VgZL

Rg + ZL
(187)

What is this? (It’s called the steady-state voltage)

• For the steady-state current

I∞ =
V∞
ZL

=
Vg

Rg + ZL
(188)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Bounce diagrams

How do we keep track of all these waves bouncing back and forth?
We use a graphical method involving bounce diagrams, as shown in
Fig. 26. Note the coordinates:

• The horizontal axis is the position along transmission line; starts
at the generator, at z = 0, and ends at the end of transmission
line z = l.

• The vertical axis is time.

• The reflection coefficients Γg and ΓL at each end are indicated.
Note the difference between voltages and currents: currents have
negative Γ-s.

So, how do we use the bounce diagram?

• Select a point on a transmission line

• Draw a line parallel to time axis through this point

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 2-35Figure 26: Bounce diagrams and voltage variation at a point.
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• Construct a zig-zag curve starting from the generator; note that
it takes time t = T to go from one end of the line to another,

• On each section of the curve indicate the product of the reflec-
tion coefficients up to that point (whenever the curve “hits” one
of the ends, the wave is multiplied by reflection coefficient)

• For your chosen point on transmission line look for its line’s
intersection with the zig-zag curve; note the times of the inter-
section

• Between two intersections, the voltage (or current) stays con-
stant

• On a V vs. t diagram indicate the times at which the two lines
intersect

• Starting from the first intersection, keep adding up terms (as
indicated on the bounce diagram) but remember that between
two times voltage is constant.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• For currents, we have to be careful about the signs - best to
indicate them on the bounce diagram itself and then just add
them up.
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(a)  Observed voltage at the sending end

(b)  The fault at z = d is represented by a 
fault resistance Rf
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Figure 2-36Figure 27: Time-domain reflectometer for ex. 2–16.
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