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1. Introduction: Waves and Phasors

1.1. Dimensions, units and notation

Basis: International System of Units (SI). Table 1 summarizes funda-
mental units (note that others can be derived from these):

Dimension Unit Symbol
Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol

Table 1: Fundamental SI units.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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For a range of values from 10−18 to 1018 a set of prefixes is use
atto (a), femto (f), pico (p), nano (n), micro (µ), milli (m), kilo (k),
mega (M), giga (G), tera (T), peta (P), exa (E) which increase by
three orders of magnitude.

1.2. Electromagnetism

Electromagnetic force is one of the four fundamental forces in na-
ture: nuclear, weak-interaction, and gravitational. Gravitational is
the weakest at 10−41 that of the nuclear force. EM force exists be-
tween charged particles . It is the dominant force in microscopic

systems (i.e. atoms and molecules). EM force is about 10−2 that of
the nuclear force.

• Notation Summary

• Scalar quantities: Medium weight italic in print and just the
letter when written. As in C for capacitance.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Units: medium-weight roman letters but looks the same as
scalars when written and hopefully obvious from context.

• Vector quantities: boldface roman in the book as in E for
electric field vector. But, when written I will put a little arrow
over the letter.

• Unit vectors: boldface roman with circumflex (hat)ˆover the
letter as in x̂.

• Phasors: a tilde˜over the letter as in Ẽ for the phasor quantity
of a time-harmonic scalar quantity E(t). If it’s a vector phasor
it is boldface with a tilde over it. When writing on the board
I will try to always use E(t) and if I leave off the explicit time
dependent (t) then a phasor is assumed (an arrow over the top
for vector phasor).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Gravitational force analogue

Newton’s law of gravity states:

Fg21 = −R̂12
Gm1m2

R2
12

(N) (1)

which expresses the dependence of the gravitational force F acting
on mass m2 due to a mass m1 at distance R12. (see Fig. 1). G is

the universal gravitational constant and R̂12 is a unit vector pointing
from m1 to m2.

m1

m2

Fg12

Fg21

R12
^

R12

Figure 1-2Figure 1: Gravitational forces between two masses.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Force acts at a distance ⇒ concept of fields

• Each mass m1 induces a gravitational field Ψ1 around it so that
if another massm2 is introduced at some point, it will experience
force equal to eq. 1

• The field does not physically eminate from the object but its
influence exists at every point in space. The field is defined as:

ψ1 = −R̂
Gm1

R2
(N/kg) (2)

where R̂ is a unit vector that points radially away from m1 (−R̂
points towards m1).

• The field is shown in Fig. 2.

• How do we find the force if the field is known?

Fg21 = ψ1m2 = −R̂12
Gm1m2

R2
12

(3)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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m1

-R̂

y y y y
1

Figure 1-3

Figure 2: Gravitational field Ψ1 induced by m1.

or, if the force on a test mass m is known, then

Ψ =
Fg
m

(4)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Electric fields

This sets the stage for introducing electric field . Unlike the gravity
field, its source is not mass, but charge, which can be either positive
or negative. Both fields vary inversely with the square of distance.

• Charge has a minimum value: one electronic charge (e) and is
measured in coulombs (C).

• Electron charge magnitude is

e = 1.602× 10−19 (C) (5)

• Actually, the charge of an electron is considered negative (as
opposed to, e.g., protons) so that electron charge is qe = −e
and the proton in qp = e.

• Two charges of the same polarity repel each other, while those
of opposite polarity attract each other,

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• The force acts along the lines joining the charges,

• The force is proportional to the charges and inversely propor-
tional to the square of the distance between them.

These properties summarized into Coulomb’s law:

Fe21 = R̂12
q1q2

4πε0R2
12

(N) in free space (6)

Symbols are similar to the gravity case, except now we have ε0 =
8.854× 10−12 (F/m) which is electrical permittivity of free space and
is measured in Farads/meter (F/m). Fig. 3 illustrates the two point
charge case.

Electrical force also acts over distance and we again define
electric field intensity E due to charge q:

E = R̂
q

4πε0R2
(V/m) in free space (7)

as illustrated in fig. 4 for a positive charge

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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+q1

+q2

Fe12

Fe21

R12
^

R12

Figure 1-4Figure 3: Electric forces between two positive point charges in free
space.

+q

E

R̂

Figure 1-5

Figure 1-5

Figure 4: Electric field E due to charge q.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Two important observations regarding charges:

1. Conservation of charge: (net) electric charge can neither
be created nor destroyed. Given np positive and nn negative
charges, the total is

q = npe− nne = (np − nn)e (C) (8)

2. Principle of linear superposition: the total vector electric
field at a point in space due to a system of point charges is equal
to the vector sum of the electric fields at that point due to the
individual charges.

• As noted, eq. 7 is valid for free space; what happens if an
electron is introduced inside electrically neutral material?

• This situation is illustrated in Fig. 5.

• Each atom has an electrically positive nucleus and an electron
“cloud” surrounding it.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 1-6

Figure 5: Polarization of atoms in a dielectric material.

• Each atom is electrically neutral.

• After introducing positive charge ⇒ different forces cause the
atoms to become distorted.

• Now we can talk about one end (pole) of atom becoming more
positive while the other becomes more negative ⇒ this effect is
called polarization and the atom is now a electric dipole .

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Observe that:

• The amount of polarization depends on the distance between
the atom and the point charge,

• The orientation of the dipole is such that the dipole axis is
directed toward the point charge, as illustrated in fig. 5.

• The electric dipoles tend to counteract the electric field from the
point charge

• The electric field inside the material is different than in free
space

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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The form of eq. 7 describing electric field is still valid, but we need
to change the electrical permittivity so that

E = R̂
q

4πεR2
(V/m) where ε = εrε0 (F/m) (9)

εr is dimensionless quantity called relative permittivity or

dielectric constant of the material. What are some typical values?
See Appendix B.

Later on we will use additional quantity electric flux density D =

εE (C/m2). Electric field E and electric flux density D constitute one
of the two fundamental pairs of quantities in electromagnetics.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnetic fields

• Experimental observation of magnetism goes way back in history
(Greeks 800 B.C.).

• Observation of the magnetic force direction led to realization
that magnetic field lines enter magnets at two points: north
and south poles, independent of magnet’s shape.

• Magnetic field lines for a bar magnet are given in fig. 6.

In addition:

• “Like” poles repel each other, while “unlike” ones attract

• While electric charges can be isolated, magnetic poles always
exist in pairs (i.e. no magnetic monopoles)

• When magnets are cut up, the pieces still have poles

• Magnetic lines encircling a magnet are called magnetic field lines
and represent magnetic flux density B .

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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S

N

B

Figure 1-7

Figure 6: Magnetic field lines around a bar magnet.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Magnetic fields need not come from permanent magnets; elec-
trical current also causes it.

• Oersted made an important observation: a magnetic needle de-
flects when placed near wire carrying current.

• Needle’s direction is always perpendicular to the the wire and
the radial line connecting the wire to the needle.

• ⇒ Current in a wire induces a magnetic field that forms closed
circular loops around the wire, as shown in Fig. 7.

Biot and Savart developed a mathematical relationship between
electric current and magnetic flux density, called, not surprisingly,
Biot-Savart law. For a very long wire in free space, the magnetic flux
density that is induced by a constant current is,

B = φ̂
µ0I

2πr
(T) (10)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 1-8

Figure 7: The magnetic field induced by a steady current flowing in
the z-direction.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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as illustrated in Fig. 7. Units are given in Tesla. µ0 = 4π×10−7 (H/m)

is called magnetic permeability of free space .
If you think that µ0 is somehow analogous to ε0, you are right; in

fact the speed of light in free space c is (Chapter 2):

c =
1

√
µ0ε0

≈ 3× 108 (m/s.) (11)

• Some material can have permeability µ � µ0 ⇒ ferrmagnetic
material (such as iron and nickel)

• The majority of materials are nonmagnetic (i.e. µ = µo)

• µ accounts for the magnetization of a material and can be de-
fined as

µ = µrµ0 (H/m) (12)

where µr is dimensionless quantity called
relative magnetic permeability and H is Henries.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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The second fundamental pair of electromagnetic quantities are
magnetic flux density B and magnetic field intensity H, which are
related by

B = µH (13)

• Static and dynamic fields

• Electric field (intensity) depends on charge q while magnetic
field (intensity) depends on the current, i.e. the rate of change
of charge flowing through some material.

• So long as current is constant, the two will be independent (i.e.
dI/dt = 0).

• In this situation, electromagnetics divides into: electrostatics
and magnetostatics.

• The former requires stationary charges (i.e. dq/dt = 0) while
the last requires constant currents (i.e. dI/dt = 0).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• More general: Dynamics, which deals with time-varying fields
that are caused by time varying currents and charge densities
(i.e. dI/dt 6= 0).

• In fact, time varying electric field generates a time varying mag-
netic field and vice-versa.

• In addition to ε and µ, we also need a conductivity measured

in Siemens/meter (S/m) denoted σ.

• It describes how “freely” electrons can move around material.

• For σ = 0 material is perfect dielectric and for σ =∞ it is said
to be a perfect conductor.

• σ, ε, µ are called constitutive parameters . If constituent pa-
rameters are constant throughout the material, it is said to be
homogeneous.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Branch Condition Field Quantities (Units)
Electrostatics Stationary charges Elec. field intensity E (V/m)

( ∂q/∂t = 0 ) Elec. flux density D (C/m2)
D = εE

Magnetostatics Steady currents Magnetic flux density B (T)
(∂I/∂t = 0 ) Mag. field intensity H (A/m)

B = µH
Dynamics Time-varying E,D,B and H

currents
(∂I/∂t 6= 0) (E,D) coupled to (B,H)

Table 2: Branches of electromagnetics

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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1.3. Traveling Waves

There are many different kinds of waves—mechanical ones are easily
observable (like stretched strings). Waves share some common prop-
erties:

• Moving waves carry energy from one point to another

• Waves have velocity, e.g. for EM waves c = 3× 108m/s

• Some waves are linear, i.e. they do not affect each other when
passing through each other, e.g. EM and sound waves.

• Waves can be transient (caused by short duration disturbances)
or continuous harmonic waves (generated by oscillating source).

• A wave is a self-sustaining disturbance of the medium in which
it travels.

Take Fig. 8 as an example of 1-D wave.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Introduction: Waves and Phasors 23

u

Figure 1-9

Figure 8: 1-D wave traveling on a string.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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(a)  Circular waves (c)  Spherical wave(b)  Plane and cylindrical waves

Plane wavefront
Two-dimensional wave

Cylindrical wavefront Spherical wavefront

Figure 1-10Figure 9: 2- and 3-D waves.

Extensions to 2-D and 3-D are shown in Fig. 9. 2-D waves are
illustrated with surface waves (e.g. water). 3-D ones may have dif-
ferent shapes, e.g. plane waves, cylindrical, spherical. Nice pictures,
but to do anything useful we need mathematical description! Look at
simplest case first, i.e. sinusoidal waves in 1-D.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Sinusoidal wave in lossless medium

Lossless medium: It does not attenuate the amplitude of the wave
traveling within it or on its surface. Take water surface waves, where
y denotes the height of water relative to unperturbed state, then

y(x, t) = A cos

(
2πt

T
− 2πx

λ
+ φ0

)
(m) (14)

A is amplitude of the wave, T is its time period , λ is spatial
wavelength, and φ0 is reference phase.

Even simpler form is obtained if the argument of the cosine term
is called the phase of the wave (not to be confused with the reference
phase φ0):

φ(x, t) =

(
2πt

T
− 2πx

λ
+ φ0

)
(15)

which is measured in radians or degrees (rad = ? degrees?). The
quantity y(x, t) can be written,

y(x, t) = cosφ(x, t) (16)

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 1-11

Figure 10: 1-D wave “snapshots”.

Let’s do some plotting of the wave y(x, t). Math tells us that this
is a periodic function. First look at y(x, t) by fixing time to t = 0 and
then by fixing position x = 0. The wave repeats itself with a spatial
period λ and time period T . This is shown in Fig. 10.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 11: Wave snapshots illustrating wave travel.

What happens if we take a snapshot at different times (within one
time period T )? That is shown in Fig. 11. If we look at position of,
e.g., peak value P, we notice that it moves in the +x direction. If we
can find what distance P travels in a given time then we can calculate
phase velocity .

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• To have a peak, phase must be zero or multiples of 2π (setting
relative phase φ0 = 0)

φ(x, t) =
2πt

T
− 2πx

λ
= 2nπ, n = 0, 1, 2 . . . (17)

• For places other than peaks, this can be generalized for any
point on the wave

2πt

T
− 2πx

λ
= const. (18)

• Take time derivative of above eq. to get velocity

2π

T
− 2π

λ

dx

dt
= 0⇒ up =

dx

dt
=
λ

T
(m/s) (19)

• Phase velocity = propagation velocity (up), is velocity of the
wave pattern. Consider water waves, if you follow one part of
the wave it moves at the phase velocity, however, the water itself
is moving up and down only.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• What about direction of propagation? If the signs of the terms
in the phase,

φ(x, t) =

(
2πt

T
− 2πx

λ

)
(20)

are different ⇒ wave travels in +x direction, otherwise in −x
direction.

• Frequency is the reciprocal of time period T: f = 1/T (Hz)

• ⇒ up = λ/T = fλ.

• Things are “simplified” further by defining:

1. Angular frequency: ω = 2πf(rad/s)

2. Phase constant (also called the wavenumber): β = 2π/λ
so substituting and taking the propagation direction in the
positive x direction:

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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y(x, t) = A cos

(
2πft− 2π

λ
x

)
= A cos (ωt− βx) (21)

• For the −x direction:

y(x, t) = A cos (ωt+ βx) (22)

What about the phase reference φ0? If it is not zero, then we have

y(x, t) = A cos (ωt− βx+ φ0) (23)

Fig. 12 shows what happens for different phase references at a fixed
position x = 0. Note that,

• Negative φ0 results in a lag behind the reference wave,

• While positive φ0 leads the reference wave.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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f 0 = p /4 f 0 = -p /4
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Reference wave  (f 0 = 0)

Figure 1-13

Figure 12: Effect of different phase reference on y(0, t).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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• Sinusoidal wave in a lossy medium

So far, wave’s amplitude did not change with distance⇒ lossless case.
If it changes (decreases) ⇒ lossy case (lossy medium).

• Attenuation constant α characterizes how lossy the medium
is

• α measured in Np/m

• Fall-off given by an exponential function exp(−αx) so that full
wave is given by

y(x, t) = Ae−αx cos (ωt− βx+ φ0) (24)

• Example of such function given in Fig. 13

To get the feel for the numbers and their meaning, do examples.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 1-14
Figure 13: Exponentially attenuated wave.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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1.4. EM spectrum

What are electromagnetic waves?

• EM waves consist of electric and magnetic field components of
the same frequency (to be discussed further later)

• EM wave phase velocity in vacuum is constant and is the so-
called velocity of light in vacuum (or free space) c recall,

c =
1

√
µ0ε0

≈ 3× 108 (m/s.) (25)

• Wavelength and frequency are related through

λ =
c

f
(26)

Note different uses for different frequencies/wavelengths. Switch
over from frequency to wavelength at around 300 GHz. Microwave
and millimeter bands (used loosely).

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 1-15 Figure 14: EM spectrum.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.



Electromagnetics I: Introduction: Waves and Phasors 36
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remote sensing, radio astronomy
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Figure 1-16

Figure 15: RF spectrum.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Figure 1-18 Figure 16: Complex V and I.

1.5. Review of Complex Numbers

We need to cover the basics: different forms and conversions between,
Euler’s identity, complex conjugate, identity, addition, multiplication,
division, powers and some other useful relations.

Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.
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1.6. Review of Phasors

• Why use phasors? Enable solutions to integro-differential equa-
tions by transforming them into linear equations.

• It is often easier to solve problems as time-harmonic. That
means the source excitation– or forcing function– varies sinu-
soidally in time.

• A large class of problems are defined this way, for example 60 Hz
power lines.

• For more general signals (e.g., broadband) we can decompose
other (periodic) functions — using Fourier methods. That is,
we can compute the time harmonic response for each of the
frequency components of a signal and recombine using Fourier
synthesis (principle of superposition).

• We will describe here how to represent time-harmonic quantities
as phasors (complex quanties) and how to solve problems.
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Figure 1-19

Figure 17: R-C circuit for phasor analysis.

• Let’s have a look at simple RC circuit example in Fig. 17

• The source function varies sinusoidally as

vs(t) = V0 sin (ωt+ φ0) (27)

• Our goal is to find the current as a function of time i(t). It
could be done in the time domain but that is somewhat more
difficult than using the phasor domain.
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The starting equation is from Kirchhoff’s voltage law:

Ri(t) +
1

C

∫
i(t)dt = vs(t) (28)

which is in time domain. The steps are outlined as follows:

Adopt a cosine reference: We use a convention here so that our
phase reference is consistent. We choose to use a cosine ref-
erence. Therefore forcing function must be cast into cosine
form when it is not given that way. Remember that sinx =
cos(π/2− x), cos(−x) = cos(x). So, here we have,

vs(t) = V0 sin (ωt+ φ0) = V0 cos (π/2− ωt− φ0) (29)

vs(t) = V0 cos (ωt+ φ0 − π/2) (30)
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Introduce phasors: We can write a cosine function as the real part
of a complex number. Take the above cosine function, we can
use Euler’s identity,

ej(ωt+φ0−π/2) = cos (ωt+ φ0 − π/2) + j sin (ωt+ φ0 − π/2)
(31)

so that we can say that,

cos (ωt+ φ0 − π/2) = <[ej(ωt+φ0−π/2)] (32)

Where, the symbol < indicates taking the real part. This could
have an amplitude in front as well, and we can group that with
the other terms in the exponent to get,

A cos (ωt+ φ0 − π/2) = <[Aej(ωt+φ0−π/2)] = <[Aej(φ0−π/2)ejωt]
(33)

And, we can call all of the first parts of the term some complex
number Z̃,

A cos (ωt+ φ0 − π/2) = <[Z̃ejωt] (34)
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So we can write z(t) = <[Z̃ejωt] to express any cosinusoidal
time function. Z̃ is the phasor. So that voltage becomes,

vs(t) = V0 sin(ωt+φ0) = V0 cos(ωt+φ0−π/2) = <[V0e
j(ωt+φ0−π/2)]

(35)
vs(t) = <[Ṽse

jωt], Ṽs = V0e
j(φ0−π/2) (36)

Remember: integration in the time domain becomes division

by jω in phasor domain, and differentiation becomes multiplication
by jω.

Similarly, we will can write the unknown current in the same
form,

i(t) = <[Ĩejωt] (37)
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Recast the equation in phasor form: Using the phasor transfor-
mations we get:

R<(Ĩejωt) +
1

C
<

(
Ĩ

jω
ejωt

)
= <(Ṽse

jωt) (38)

For the phasor equation we drop the ejωt terms and know that
to get back to the time domain we need to put that back and
take the real part. The phasor equation becomes just,

RĨ +
Ĩ

jωC
= Ṽs (39)

Ĩ

(
R+

1

jωC

)
= Ṽs (40)
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Solution in phasor domain: We can solve for the current phasor,

Ĩ =
Ṽs(

R+ 1
jωC

) (41)

Substitute in for the source voltage phasor, Ṽs = V0e
j(φ0−π/2),

Ĩ =
V0e

j(φ0−π/2)(
R+ 1

jωC

) (42)

Multiply out denominator term,

Ĩ =
V0e

j(φ0−π/2)jωC

(1 + jωRC)
=

V0ωCe
jφ0

(1 + jωRC)
(43)

We can write the denominator term as a magnitude and phase,

1 + jωRC =
√

1 + ω2R2C2ejφ1 (44)
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Where the phase is φ1 = tan−1(ωRC).

We can then write the current phasor as,

Ĩ =
V0ωC√

1 + ω2R2C2
ej(φ0−φ1) (45)

Solution in time domain: The last step is that we need to go back
to a time domain solution. To find i(t), we multiply the phasor
by ejωt and take the real part.

i(t) = <[Ĩejωt] (46)

i(t) = <[
V0ωC√

1 + ω2R2C2
ej(φ0−φ1)ejωt] (47)

i(t) =
V0ωC√

1 + ω2R2C2
cos (ωt+ φ0 − φ1) (48)

Table 1-5 in the book gives various time domain expressions and
their corresponding phasor domain expression.
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Traveling waves in the phasor domain

• A traveling wave has a dependency that is something of the form
ωt± βx.

• For a time harmonic signal,

A cos(ωt+ βx)⇔ Aejβx (49)

• For a wave traveling in the positive x direction, the sign between
ωt and βx are opposite (e.g., ωt− βx).

• When the sign is the same the wave is moving in the negative
direction.

• So, a wave traveling in the negative x direction has a phasor
of the form Aejβx and moving in the positive x direction is,
Ae−jβx.

• Therefore, the sign of the exponent is opposite to the direction
of travel.
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