Solution:

ECE317 HW #9

Problem 1:

Determine the type of the following unity-feedback systems for which the forward-path transfer functions are given:

(a)
$$G(s) = \frac{K}{(1+s)(1+10s)(1+20s)}$$

(a)
$$G(s) = \frac{K}{(1+s)(1+10s)(1+20s)}$$
 (b) $G(s) = \frac{10e^{-0.2s}}{(1+s)(1+10s)(1+20s)}$

(c)
$$G(s) = \frac{10(s+1)}{s(s+5)(s+6)}$$

(d)
$$G(s) = \frac{100(s-1)}{s^2(s+5)(s+6)^2}$$

(e)
$$G(s) = \frac{10(s+1)}{s^3(s^2+5s+5)}$$

(f)
$$G(s) = \frac{100}{s^3(s+2)^2}$$

(g)
$$G(s) = \frac{5(s+2)}{s^2(s+4)}$$

(h)
$$G(s) = \frac{8(s+1)}{(s^2+2s+3)(s+1)}$$

Solution:

- (a) Type 0
- **(b)** Type 0
- (c) Type 1
- (d) Type 2
- (e) Type 3
- (f) Type 3

- type 2 **(g)**
- **(h)** type o

Problem 2:

Determine the step, ramp and parabolic error constants of the following unity-feedback control systems. The forward-path transfer functions are given by:

(a)
$$G(s) = \frac{1000}{(1+0.1s)(1+10s)}$$
 (b) $G(s) = \frac{100}{s(s^2+10s+100)}$

(b)
$$G(s) = \frac{100}{s(s^2 + 10s + 100)}$$

(c)
$$G(s) = \frac{K}{s(1+0.1s)(1+0.5s)}$$
 (d) $G(s) = \frac{100}{s^2(s^2+10s+100)}$

(d)
$$G(s) = \frac{100}{s^2(s^2 + 10s + 100)}$$

(e)
$$G(s) = \frac{1000}{s(s+10)(s+100)}$$

(f)
$$G(s) = \frac{K(1+2s)(1+4s)}{s^2(s^2+s+1)}$$

Solution:

(a)
$$K_p = \lim_{s \to 0} G(s) = 1000$$

$$K_{v} = \lim_{s \to 0} sG(s) = 0$$

$$K_a = \lim_{s \to 0} s^2 G(s) = 0$$

(b)
$$K_p = \lim_{s \to 0} G(s) = \infty$$

$$K_{v} = \lim_{s \to 0} sG(s) = 1$$

$$K_a = \lim_{s \to 0} s^2 G(s) = 0$$

(c)
$$K_p = \lim_{s \to 0} G(s) = \infty$$

$$K_{v} = \lim_{s \to 0} sG(s) = K$$

$$K_a = \lim_{s \to 0} s^2 G(s) = 0$$

(d)
$$K_p = \lim_{s \to 0} G(s) = \infty$$

$$K_{v} = \lim_{s \to 0} sG(s) = \infty$$

$$K_a = \lim_{s \to 0} s^2 G(s) = 1$$

(e)
$$K_p = \lim_{s \to 0} G(s) = \infty$$

$$K_{v} = \lim_{s \to 0} sG(s) = 1$$

$$K_a = \lim_{s \to 0} s^2 G(s) = 0$$

(f)
$$K_p = \lim_{s \to 0} G(s) = \infty$$

$$K_{v} = \lim_{s \to 0} sG(s) = \infty$$

$$K_a = \lim_{s \to 0} s^2 G(s) = K$$

Problem 3:

For the unity-feedback control systems described in Problem 2, determine the steady-state error for a unitstep, $u_s(t)$, unit-ramp, $tu_s(t)$, and parabolic input $\left(\frac{t^2}{2}\right)u_s(t)$. Check the stability of the system before applying the final-value theorem.

(a)
$$G(s) = \frac{1000}{(1+0.1s)(1+10s)}$$
 (b) $G(s) = \frac{100}{s(s^2+10s+100)}$

(b)
$$G(s) = \frac{100}{s(s^2 + 10s + 100)}$$

(c)
$$G(s) = \frac{K}{s(1+0.1s)(1+0.5s)}$$
 (d) $G(s) = \frac{100}{s^2(s^2+10s+100)}$

(d)
$$G(s) = \frac{100}{s^2(s^2 + 10s + 100)}$$

(e)
$$G(s) = \frac{1000}{s(s+10)(s+100)}$$
 (f) $G(s) = \frac{K(1+2s)(1+4s)}{s^2(s^2+s+1)}$

(f)
$$G(s) = \frac{K(1+2s)(1+4s)}{s^2(s^2+s+1)}$$

Solution:

(a) Input

Error Constants

Steady-state Error

$u_s(t)$	$K_{p} = 1000$	1/1001
$tu_s(t)$	$K_v = 0$	\propto
$t^2u_s(t)/2$	$K_a = 0$	\propto

(b)	Input	Error Constants	Steady-state Error
	$u_s(t)$	$K_p = \infty$	0
	$tu_s(t)$	$K_{_{V}}=1$	1
	$t^2u_s(t)/2$	$K_a = 0$	\propto

(C) Input	Error Constants	Steady-state Error	
$u_s(t)$	$K_p = \infty$	0	
$tu_s(t)$	$K_{_{\mathcal{V}}}=K$	1/K	
$t^2u_s(t)/2$	$K_a = 0$	α	

The above results are valid if the value of K corresponds to a stable closed-loop system.

(d) The closed-loop system is unstable. It is meaningless to conduct a steady-state error analysis.

(e)	Input	Error Constants	Steady-state Error
	$u_s(t)$	$K_p = \infty$	0
	$tu_s(t)$	$K_{_{V}}=1$	1
	$t^2u_s(t)/2$	$K_a = 0$	Œ
(f)	Input	Error Constants	Steady-state Error
	$u_s(t)$	$K_p = \infty$	0
	$tu_s(t)$	$K_{_{_{\mathcal{V}}}}=\infty$	0
	$t^2u_s(t)/2$	$K_a = K$	1/K

The closed-loop system is stable for all positive values of K. Thus the above results are valid.

Problem 4:

The following transfer functions are given for a single-loop non-unity-feedback control system. Determine the steady errors for a unit-step, $u_s(t)$, unit-ramp, $tu_s(t)$, and parabolic input, $\left(\frac{t^2}{2}\right)u_s(t)$.

(a)
$$G(s) = \frac{1}{(s^2 + s + 2)}$$
 $H(s) = \frac{1}{(s + 1)}$
(b) $G(s) = \frac{1}{s(s + 5)}$ $H(s) = 5$
(c) $G(s) = \frac{1}{s^2(s + 10)}$ $H(s) = \frac{s + 1}{s + 5}$
(d) $G(s) = \frac{1}{s^2(s + 12)}$ $H(s) = 5(s + 2)$

Solution:

(a)
$$K_H = H(0) = 1$$

$$M(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{s+1}{s^3 + 2s^2 + 3s + 3}$$

$$a_0 = 3, \quad a_1 = 3, \quad a_2 = 2, \quad b_0 = 1, \quad b_1 = 1.$$

Unit-step Input:

$$e_{ss} = \frac{1}{K_{H}} \left(1 - \frac{b_{0} K_{H}}{a_{0}} \right) = \frac{2}{3}$$

Unit-ramp input:

$$a_0 - b_0 K_H = 3 - 1 = 2 \neq 0$$
. Thus $e_{ss} = \infty$.

Unit-parabolic Input:

$$a_0 - b_0 K_H = 2 \neq 0$$
 and $a_1 - b_1 K_H = 1 \neq 0$. Thus $e_{ss} = \infty$.

(b)
$$K_H = H(0) = 5$$

$$M(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{1}{s^2 + 5s + 5}$$
 $a_0 = 5, a_1 = 5, b_0 = 1, b_1 = 0.$

Unit-step Input:

$$e_{ss} = \frac{1}{K_{H}} \left(1 - \frac{b_{0}K_{H}}{a_{0}} \right) = \frac{1}{5} \left(1 - \frac{5}{5} \right) = 0$$

Unit-ramp Input:

$$i = 0$$
: $a_0 - b_0 K_H = 0$ $i = 1$: $a_1 - b_1 K_H = 5 \neq 0$

$$e_{ss} = \frac{a_1 - b_1 K_H}{a_0 K_H} = \frac{5}{25} = \frac{1}{5}$$

Unit-parabolic Input:

$$e_{ss} = \infty$$

(c)
$$K_H = H(0) = 1/5$$

$$M(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{s+5}{s^4 + 15s^3 + 50s^2 + s + 1}$$
 The system is stable.

$$a_0 = 1$$
, $a_1 = 1$, $a_2 = 50$, $a_3 = 15$, $b_0 = 5$, $b_1 = 1$

Unit-step Input:

$$e_{ss} = \frac{1}{K_{H}} \left(1 - \frac{b_{0}K_{H}}{a_{0}} \right) = 5 \left(1 - \frac{5/5}{1} \right) = 0$$

Unit-ramp Input:

$$i=0$$
: $a_0-b_0K_H=0$ $i=1$: $a_1-b_1K_H=4/5\neq 0$

$$e_{ss} = \frac{a_1 - b_1 K_H}{a_0 K_H} = \frac{1 - 1/5}{1/5} = 4$$

Unit-parabolic Input:

$$e_{xx} = \infty$$

(d)
$$K_H = H(0) = 10$$

$$M(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{1}{s^3 + 12s^2 + 5s + 10}$$
 The system is stable.

$$a_0 = 10$$
, $a_1 = 5$, $a_2 = 12$, $b_0 = 1$, $b_1 = 0$, $b_2 = 0$

Unit-step Input:

$$e_{ss} = \frac{1}{K_H} \left(1 - \frac{b_0 K_H}{a_0} \right) = \frac{1}{10} \left(1 - \frac{10}{10} \right) = 0$$

Unit-ramp Input:

$$i = 0: \quad a_0 - b_0 K_H = 0 \quad i = 1: \quad a_1 - b_1 K_H = 5 \neq 0$$

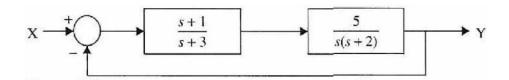
$$e_{ss} = \frac{a_1 - b_1 K_H}{a_0 K_H} = \frac{5}{100} = 0.05$$

Unit-parabolic Input:

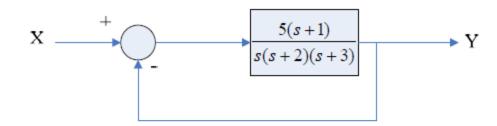
$$e_{ss} = \infty$$

Problem 5:

Find the position, velocity and acceleration constants for the system given below.



Solution:



$$G(s) = \frac{5(s+1)}{s(s+2)(s+3)}$$

a) Position error:
$$K_p = \lim_{s\to 0} G(s) = \lim_{s\to 0} \frac{5(s+1)}{s(s+2)(s+3)} = \infty$$

b) Velocity error:
$$K_v = \lim_{s \to 0} sG(s) = \lim_{s \to 0} \frac{5(s+1)}{(s+2)(s+3)} = \frac{5}{6}$$

c) Acceleration error:
$$K_a = \lim_{s \to \infty} s^2 G(s) = \lim_{s \to \infty} \frac{5s(s+1)}{(s+2)(s+3)} = 0$$

Problem 6:

For the system of Problem 5, find the steady-state error for (a) a unit-step, $u_s(t)$, (b) a unit-ramp, $tu_s(t)$, and (c) a unit parabolic input, $\left(\frac{t^2}{2}\right)u_s(t)$.

Solution:

a) Steady state error for unit step input:

$$e_{SS} = \frac{1}{1 + K_p}$$

Referring to the result of Problem 4, $K_p = \infty \implies e_{ss} = 0$

b) Steady state error for ramp input:

$$e_{SS} = \frac{1}{K_v}$$

Referring to the result of Problem 4, $K_v = \frac{5}{6} \implies e_{ss} = \frac{6}{5}$

Steady state error for parabolic input:

$$e_{SS} = \frac{1}{K_a}$$

Referring to the result of Problem 4, $K_a = 0 \implies e_{ss} = \infty$