ECE317 HW #9

Problem 1:

Determine the type of the following unity-feedback systems for which the forward-path transfer functions are given:

(a)
$$G(s) = \frac{K}{(1+s)(1+10s)(1+20s)}$$
 (b) $G(s) = \frac{10e^{-0.2s}}{(1+s)(1+10s)(1+20s)}$
(c) $G(s) = \frac{10(s+1)}{s(s+5)(s+6)}$ (d) $G(s) = \frac{100(s-1)}{s^2(s+5)(s+6)^2}$
(e) $G(s) = \frac{10(s+1)}{s^2(s+5)(s+6)}$ (f) $G(s) = \frac{100}{100}$

(g)
$$G(s) = \frac{5(s+2)}{s^2(s+4)}$$
 (h) $G(s) = \frac{8(s+1)}{(s^2+2s+3)(s+1)}$

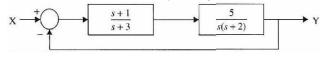
Problem 2:

Determine the step, ramp and parabolic error constants of the following unity-feedback control systems. The forward-path transfer functions are given by:

(a)
$$G(s) = \frac{1000}{(1+0.1s)(1+10s)}$$
 (b) $G(s) = \frac{100}{s(s^2+10s+100)}$
(c) $G(s) = \frac{K}{s(1+0.1s)(1+0.5s)}$ (d) $G(s) = \frac{100}{s^2(s^2+10s+100)}$
(e) $G(s) = \frac{1000}{s(s+10)(s+100)}$ (f) $G(s) = \frac{K(1+2s)(1+4s)}{s^2(s^2+s+1)}$

Problem 3:

For the unity-feedback control systems described in Problem 2, determine the steady-state error for a unit-step, $u_s(t)$, unit-ramp, $tu_s(t)$, and parabolic input $\left(\frac{t^2}{2}\right)u_s(t)$. Check the stability of the system before applying the final-value theorem.


Problem 4:

The following transfer functions are given for a single-loop non-unity-feedback control system. Determine the steady errors for a unit-step, $u_s(t)$, unit-ramp, $tu_s(t)$, and parabolic input, $\left(\frac{t^2}{2}\right)u_s(t)$.

(a)
$$G(s) = \frac{1}{(s^2 + s + 2)}$$
 $H(s) = \frac{1}{(s + 1)}$
(b) $G(s) = \frac{1}{s(s + 5)}$ $H(s) = 5$
(c) $G(s) = \frac{1}{s^2(s + 10)}$ $H(s) = \frac{s + 1}{s + 5}$
(d) $G(s) = \frac{1}{s^2(s + 12)}$ $H(s) = 5(s + 2)$

Problem 5:

Find the position, velocity and acceleration constants for the system given below.

Problem 6:

For the system of Problem 5, find the steady-state error for (a) a unit-step, $u_s(t)$, (b) a unit-ramp, $tu_s(t)$, and (c) a unit parabolic input, $\left(\frac{t^2}{2}\right)u_s(t)$.