ECE317 HW #4

- 1) Why are pole locations of a transfer function important?
- 2) How do you determine if a transfer function is stable, marginally stable or unstable?

3)	Determine	the	stability	of	following	transfer	functions:
----	-----------	-----	-----------	----	-----------	----------	------------

G(s)	Stable/ marginally stable /unstable
$\frac{5(s+2)}{(s+1)(s^2+s+1)}$?
$\frac{5(-s+2)}{(s+1)(s^2+s+1)}$?
$\frac{5}{(s-2)(s^2+3)}$?
$\frac{s^2 + 3}{(s+1)(s^2 - s + 1)}$?
$\frac{1}{(s+1)(s^2+1)^2}$?
$\frac{1}{(s^2-1)(s+1)}$?
$\frac{20}{(s+1)(s+2)(s+3)}$?
$\frac{20(s+1)}{(s-1)(s^2+2s+3)}$?
$\frac{10(s-1)e^{-s}}{(s+5)(s^2+3)}$?
$\frac{1}{(s+5)(s^2+2)^2}$?

4) The relationship between three variables, v, v_g and d is given by the following:

$$v = \frac{1}{1 - d} v_g$$

As this relationship is nonlinear we are interested in finding a linearized model by considering small-signal deviations around a steady state operating point. To this end we consider each of the variables to consist of a steady state value plus a small deviation from the steady state such that

$$v = V + \hat{v}$$
 where $\hat{v} \ll V$
 $v_g = V_g + \hat{v}_g$ where $\hat{v}_g \ll V_g$
 $d = D + \hat{d}$ where $\hat{d} \ll D$

Capitalized terms represent steady state values and terms with a caret '^' indicate a small deviation from the steady state. Find the transfer functions: $\frac{\hat{v}}{\hat{d}}$ and $\frac{\hat{v}}{\hat{v}_{o}}$.