
EE 520: Random Processes Fall 2021

Lecture 5
Continuous Random Variables and Detection Theory Primer

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 4.1 (skip 4.1.3), 4.2, 6.1.3, 8.4, 9.1.8; Gubner: 4.1 - 4.3

1 Densities and Probabilities

We now consider random variables that can take values in an uncountable set, which we call continuous
RVs.

Definition 1. A random variable is called continuous if

P (X ∈ B) =

∫
B

fX(t)dt =

∫ ∞
−∞

1B(t)fX(t)dt,

where 1B(x) is the indicator function taking the value 1 if x ∈ B and 0 otherwise and fX(t) is called the
probability density function (PDF).

We’re often interested in sets B that have the form [a, b], so we typically consider tasks such as computing

P (a ≤ X ≤ b) =

∫ b

a

fX(t)dt.

Note: The numerical value fX(t) should not be viewed as a probability. For continuous RVs, it holds that

P (X = t) = 0 ∀t ∈ R,

i.e., the probability that a continuous RV takes on any single value is zero. Instead, you should think of
fX(t)dt as the element of probability

P (t ≤ X ≤ t+ dt).

1.1 Common Densities

• uniform: Outcome “random” but lies in some known interval. This has the PDF

fX(t) =

{
1
b−a a ≤ t ≤ b
0 otherwise

• exponential: Non-negative RVs that decay over time, having PMF

fX(t) =

{
λe−λt t ≥ 0

0 otherwise

• Laplace: Double-sided exponential with PMF

fX(t) =
λ

2
e−λ|t|

1
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• Gaussian: Also known as the “normal” distribution and is probably the most common density. Has
PDF

fX(t) =
1√

2πσ2
exp

(
− (t− µ)2

2σ2

)
,

where µ is the mean and σ2 > 0 is the variance. To indicate that X is a Gaussian RV, we write
X ∼ N (µ, σ2).

We will see in a few weeks that if we have RVs X1, X2, . . . all independent and standardized, then

1√
n

n∑
i=1

Xi → N (0, 1) as n→∞

This is known as the central limit theorem. Continuous RVs are the main reason we need to deal with the
σ-algebra, as illustrated by the following fact.

Fact 1. Let Ω = [0, 1]. No function P exists from the power set 2Ω to the reals such that

1. P ([a, b]) = b− a, ∀0 ≤ a ≤ b ≤ 1

2. the axioms of probability are satisfied.

The above fact states that if we insisted on measuring everything (i.e., if we ignored the need for σ-
algebras), we would not be able to have the above common-sense definition of the uniform distribution. We
may prove this fact later in the course if time allows.

Definition 2. If the joint density fXY (x, y) exists, we say X and Y are independent if

fXY (x, y) = fX(x)fY (y).

2 Expectation

For continuous RVs, expectation is analogous to the discrete case

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx

for any function g : R→ R. In particular,

E[X] =

∫ ∞
−∞

xfX(x)dx.

The definitions of variance, correlation, and covariance are also analogous to the discrete case.

3 Transform Methods

A few transformations make computing functions of RVs easier sometimes. We will only use one of these in
this course.

Definition 3. The moment generating function (MGF) of a RV X is defined as

MX(s) = E[esX ] =

∫ ∞
−∞

esxfX(x)dx.
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As the name indicates, the MGF can be used to compute moments, i.e., E[Xk] of a RV X. It holds that

E[Xk] =
∂k

∂sk
MX(s)|s=0.

In words, the kth moment of X can be found by taking the kth derivative of the MGF and evaluating it at
s = 0.

Example 1. Let X ∼ N (0, 1). Then

MX(s) = E[esX ]

=

∫ ∞
−∞

esx
1√
2π
e−x

2/2dx

= es
2/2

∫ ∞
−∞

1√
2π
e−(x−s)2/2dx

= es
2/2,

where we have used the fact that the integrated term in the third line is the PDF of a N (s2, 0) RV and
therefore integrates to one. Now note that

∂

∂s
MX(s) = ses

2/2 =⇒ E[X] = 0

∂2

∂s2
MX(s) = s2es

2/2 + es
2/2 =⇒ E[X2] = 1,

both of which make sense given that we said X has zero mean and unit variance.

The MGF shows up frequently when bounding RVs, namely in Chernoff’s bounding method, which we’ll
encounter in a few weeks. Bounding RVs becomes important in machine learning theory, when we want to
bound the difference between the true and estimated error of an algorithm.

The MGF is also useful for handling sums of independent RVs.

Proposition 1. If X and Y are independent RVs and Z = X + Y , then

MZ(x) = MX(x)MY (s).

Proof. We apply the definition of the MGF and use independence.

MZ(s) =

∫ ∞
−∞

eszfZ(z)dz

=

∫ ∞
−∞

∫ ∞
−∞

es(x+y)fXY (x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

esxesyfX(x)fY (y)dxdy

=

∫ ∞
−∞

esxfX(x)dx

∫ ∞
−∞

esyfY (y)dy

= MX(s)MY (s).
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4 Detection Theory Primer

In a variety of electrical engineering topics ranging from communications to machine learning, we are inter-
ested in classifying signals/measurements in a statistically-optimal way.

Example 2. Transmit a signal X through a binary channel and receive signal Y . Given the received signal,
what should we say was transmitted?

Example 3. Feature-label pairs (X,Y ) are generated according to some distribution PXY . Given a new
feature vector X̂, how should we decide the class label Ŷ ?

We can use probability theory to optimize how we make these decisions. For now, we assume X ∈ {0, 1},
corresponding to the case of binary detection/classification.

4.1 Setup

Define the following terminology.

• H0: null hypothesis (X = 0)

• H1: alternate hypothesis (X = 1)

• D0: decide H0

• D1: decide H1

Errors occur when we either

1. are in the setting H0 but decide X = 1 (false alarm)

2. are in the setting H1 but decide X = 0 (missed detection),

so our total error is
E = (H0 ∩D1) ∪ (H1 ∩D0) .

Our goal is to design a detector to minimize the probability of error

P (E) = P ((H0 ∩D1) ∪ (H1 ∩D0))

= P (H0 ∩D1) + P (H1 ∩D0)

= P (D1 | H0)P (H0) + P (D0 | H1)P (H1).

We will make our decision by separating the space into two regions, R0 where we decide D0 and R1 where we
decide D1 (see Fig. 8.10 in Pishro-Nik). Minimizing the probability of error then amounts to minimizing the
probability mass from each H0 and H1 that lies on the “wrong” side of the boundary. We want to minimize

P (E) =

∫
R0

P (H1)f(x | H1)dx+

∫
R1

P (H0)f(x | H0)dx.

Note that

1 =

∫ ∞
−∞

f(x | H1)dx =

∫
R0

f(x | H1)dx+

∫
R1

f(x | H1)dx,

so we can rewrite the probability of error as

P (E) =

∫
R1

P (H0)f(x | H0)dx+ P (H1)

∫
R0

f(x | H1)dx

P (E) =

∫
R1

P (H0)f(x | H0)dx+ P (H1)

(
1−

∫
R1

f(x | H1)dx

)
=

∫
R1

P (H0)f(x | H0)− P (H1)f(x | H1)dx+ P (H1).
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When we’re optimizing anything in life, we should focus on the things we can change, as opposed to those
we cannot (stoic philosophy quote of the lecture). Since P (H1) is fixed, we choose R1 to minimize∫

R1

P (H0)f(x | H0)− P (H1)f(x | H1)dx,

which is done by making R1 the region over which

P (H1)f(x | H1) > P (H0)f(x | H0).

This leads to the maximum a posteriori (MAP or Bayesian) detection rule

P (H0)f(x | H0)
H0

≷ P (H1)f(x | H1),

which indicates we choose H0 if the top inequality holds and choose H1 otherwise. We can also divide both
sides by fX(x), which shows the relationship to the posterior probability more clearly and yields a second
form of the MAP rule

f(H0 | x)
H0

≷ f(H1 | x).

If we do not have any prior beliefs about the events H0 or H1, we can assume they are equal, which yields
the maximum likelihood (ML) detection rule

f(x | H0)
H0

≷ f(x | H1).

As a reminder to help you with the terminology, note that

• P (H0) is the prior probability that H0 happens before any data is received

• P (H0 | x) is the posterior probability that H0 happens now that we have the data x

• P (x | H0) is the likelihood that x takes some value given that H0 occurred

• the MAP rule can be viewed through the likelihood ratio test, which under equal priors on H0 and
H1 makes the MAP and ML detectors equivalent

f(x | H1)

f(x | H0)

H1

≷
P (H0)

P (H1)
.
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