
EE 520: Random Processes Fall 2021

Lecture 4
Conditional Expectation

Instructor Name: John Lipor

Recommended Reading: Pishro-Nik: 5.1, 5.3.1, 6.2.4; Gubner: 2.4, 3.4, 3.5

1 Indicator Example

Before digging into new material, we’ll do another example using an indicator random variable.

Example 1. Consider the set of integers {1, 2, . . . , n}. A non-empty subset of {1, 2, . . . , n} is chosen at
random. Let X denote the size of the subset. What is E[X]?

First, we need to define an indicator RV such that summing all n of them will give us X. Let

Xi =

{
1, if i belongs to the subset

0, otherwise

so that X =
∑n

i=1 Xi. There are 2n − 1 possible non-empty subsets, and 2n−1 of them contain the integer i
(think HW1, problem 3a). Hence

E[Xi] = P (Xi = 1) =
2n−1

2n − 1
.

We can then easily compute

E[X] = n
2n−1

2n − 1
.

2 Expectation

We’ve already seen that two RVs are independent if their joint probabilities factor. Expectation can also be
used to determine independence.

Fact 1. Two RVs X and Y are independent if and only if

E[h(X)g(Y )] = E[h(X)]E[k(Y )]

for all functions h(·) and k(·).

The “for all” condition in the above is an important distinction. When h and k are both the identity
function (i.e., h(x) = x and k(y) = y), we say the RVs are uncorrelated.

Definition 1. The correlation between to RVs X and Y is E[XY ]. If E[XY ] = E[X]E[Y ], we say X and
Y are uncorrelated.

You should think for yourself about whether independence implies anything about correlation and likewise
whether correlation implies anything about independence. In general, it is quite difficult to talk about
expectations of products, so we often use tricks to bound them. One such trick is the Cauchy-Schwarz
inequality.

Definition 2. The Cauchy-Schwarz inequality (for random variables) states that

|E[XY ]| ≤
√
E[X2]E[Y 2].
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Correlation does not account for the mean of either X or Y . This is done in the covariance.

Definition 3. The covariance between two RVs X and Y is

cov (X,Y ) = E [(X − E[X]) (Y − E[Y ])] .

When we remove the mean from a RV, we call it zero-mean or centered, and the correlation and covariance
become identical. A RV with zero mean and unit variance is called standard or normalized.

Fact 2. For uncorrelated RVs X1, X2, . . . , Xn

var

(
n∑

i=1

Xi

)
=

n∑
i=1

var(Xi).

Example 2. What value of cov(X,Y ) implies X and Y are uncorrelated?

cov(X,Y ) = E [(X − E[X]) (Y − E[Y ])]

= E [XY − E[X]Y −XE[Y ] + E[X]E[Y ]]

= E[XY ]− E [E[X]Y ]− E [XE[Y ]] + E [E[X]E[Y ]]

= E[XY ]− E[X]E[Y ],

where we have used the fact that E[X] is not random, and hence E[E[X]Y ] = E[X]E[Y ]. This shows that X
and Y are uncorrelated if and only if cov(X,Y ) = 0.

3 Conditional Probability

For discrete RVs, the conditional probability follows directly from the definition of random events (see Lecture
2 notes). The conditional PMF is summarized via the following equation

pXY (xi, yj) = pX|Y (xi | yj)pY (yj) = pY |X(yi | xj)pX(xj),

where
pX|Y (xi | yj) = P (X = xi | Y = yj).

Using the PMF, the law of total probability (LTP) becomes

pY (yj) =
∑
i

pY |X(yj | xi)pX(xi).

Example 3. (Binary symmetric channel). Suppose we transmit X ∈ {0, 1} and receive a flipped bit with
probability ε (called the “crossover” probability). Let Y be the received signal. What is pY (y) if X ∼ Ber(p)?

Using the LTP, we can easily find

P (Y = 0) = P (Y = 0 | X = 0)P (X = 0) + P (Y = 0 | X = 1)P (X = 1)

= (1− ε)(1− p) + εp,

and P (Y = 1) = 1− P (Y = 0).

Conditioning is done to “remove” randomness, making some terms easier to deal with. One takeaway is
that when we condition on something, it is no longer random—this leads to the substitution law

P (g(X,Y ) = z | X = xi) = P (g(xi, Y ) = z | X = xi) .

Example 4. Let X and Y be RVs and Z = X + Y = g(X,Y ). Then

P (Z = j | X = i) = P (X + Y = j | X = i)

= P (i + Y = j | X = i)

= P (Y = j − i | X = i).

If we additionally have that X and Y are independent, then we can drop the conditioning to see that

P (Z = j | X = i) = P (Y = j − i).
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4 Conditional Expectation

Note that Y | X is a RV itself, so we can compute its expectation

E[Y | X] =
∑
j

yjpY |X(yj | xi).

An important tool using conditional expectation is the law of total expectation (LTE). We’ll use the LTE in
two forms.

Definition 4. (LTE, version 1). Let {Bi}Ni=1 partition the sample space Ω. Then

E[X] =

N∑
i=1

E[X | Bi]P (Bi).

Example 5. A biased coin with P (H) = p is tossed sequentially until two consecutive heads appear. Let
X be the number of required tosses. Find E[X].

For this problem, we create the partition
B1 = T on first toss P (B1) = 1− p

B2 = HT P (B2) = p(1− p)

B3 = HH P (B3) = p2.

Using this partition, we compute

E[X] = (1− p) (E[X] + 1) + p(1− p) (E[X] + 2) + 2p2.

Note that this example may be useful for HW1, problem 5.

In the second variant of the LTE, we partition over the values a RV can take. This is of course not a
different LTE, but I find it helpful to write it out separately.

Definition 5. (LTE, version 2). Let X and Y be two (possibly correlated) RVs. Then

E[X] = EY

[
EX|Y [X | Y ]

]
,

where EZ [f(Z)] indicates that the expectation is with respect to the randomness in the RV Z.

Example 6. Let Ω = {1, 2, . . . , 6}, F = 2Ω, and assume all outcomes are equiprobable. Define

X =

{
1 ω ∈ {2, 3, 4}
0 ω ∈ {1, 5, 6}

Y =

{
1 ω ∈ {1, 2, 3}
0 ω ∈ {4, 5, 6} .

Clearly E[X] = 1/2, but let’s use LTE to check.

E[X | Y = 0] = E[X | ω ∈ {4, 5, 6}] =
1

3
× 1 +

2

3
× 0 =

1

3

E[X | Y = 1] = E[X | ω ∈ {1, 2, 3}] =
2

3
× 1 +

1

3
× 0 =

2

3

E[X] = EY

[
EX|Y [X | Y ]

]
=

1

2
× 1

3
+

1

2
× 2

3
=

1
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