
EE 510: Mathematical Foundations of Machine Learning Winter 2021

Demo: Spectral Clustering
Instructor Name: John Lipor

1 Introduction

In this demo, you will implement and experiment with the Spectral Clustering algorithm, which is a method
for clustering data points based on their pairwise similarity. Clustering is one of the most common problems
solved in the domain of unsupervised learning. While there is no single agreed-upon definition of clustering,
for our purposes, we can think of it as unsupervised classification. You are given a set of data points that
you believe lie in K groups, and your goal is to automatically determine these groups using only the data
themselves. A before-and-after of an ideal clustering is shown in Fig. 1.

(a) (b)

Figure 1: (a) Set of unlabeled data points that we wish to cluster without any explicit knowledge of which
points belong together. (b) Data point with correct labels shown.

The simplest and most widely-used clustering algorithm is the K-means algorithm, which finds a set of
K centroids and clusters points according to their nearest centroid. However, K-means has many known
flaws, one being that it is incapable of clustering data in some “common sense” configuration (more later).
In this demo, we’ll look at an alternative to K-means known as spectral clustering, which is based heavily in
the eigenvalue decomposition.

2 Spectral Clustering

The basic idea behind spectral clustering is that we can take some notion of similarity between points (e.g.,
pairwise distance) and use this to embed the points in a different space, where K-means does perform well.
Spectral clustering proceeds as follows.

1. Given a set of unlabeled points {x1, x2, . . . , xN}, construct a graph where the nodes are the data points
and the edges denote the similarity between points

2. Form the N ×N Laplacian matrix L from the graph

3. Infer a partition of the graph (clusters) from the eigenvalue decomposition of L

We break these steps down below.

1

https://en.wikipedia.org/wiki/K-means_clustering


Demo Spectral Clustering 2

2.1 Similarity Graphs

Similarity graphs are defined by a graph structure and edge weights. We won’t get too deep into how a graph
is formally defined, but what is important for spectral clustering is that we maintain a weighted adjacency
matrix W ∈ RN×N . This matrix is defined such that wij ≥ 0 for all i, j, and wij > 0 if and only if the points
xi and xj are connected to one another (a.k.a., adjacent). Note that we define W to be symmetric. As an
example, you could create a graph where every “point” is a user on facebook, and two points are connected
if people are friends, resulting in a value of wij = 1. There are a large number of ways to define whether two
points are connected. A few examples are

• k-nearest neighbor graph: Every xi is connected to its k nearest neighbors (based on some notion of
distance, such as the 2-norm)

• ε-ball graph: Every xi is connected to every xj having ‖xi − xj‖ ≤ ε

• complete graph: All points are connected

Aside from determing the answer to the binary question of whether two points are connected, there are also
a variety of ways to determine the strength of the connection between two points. We will consider

• Constant : Set

wij =

{
1, xi, xj connected

0, otherwise

• Gaussian: Set

wij =

{
e−‖xi−xj‖2/2σ2

, xi, xj connected

0, otherwise
,

where σ > 0 is a tuning parameter that you can play with.

Ideally, we only want to connect points in the same cluster, but in practice we don’t know the clusters.
Hence, choosing parameters such as k, ε, σ can be a difficult problem that has a dramatic impact on the
performance of clustering.

2.2 Graph Laplacians

As stated above, we use the graph Laplacian L to perform clustering. This is a matrix that is formed from
W that is known to have useful properties for clustering. Define the (weighted) degree of a node xi to be

di =

N∑
j=1

wij (1)

and the degree matrix to be the diagonal matrix whose diagonal entries are the degrees, i.e.,

D =


d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

. . .
...

0 0 0 . . . dN

 . (2)

We then define the (unnormalized) graph Laplacian as

L = D −W. (3)



Demo Spectral Clustering 3

Note that by definition L is independent of the self-similarity weights wii since

Lii = di − wii =
∑
j 6=i

wij .

There are also some empirical benefits to using the normalized graph Laplacian

L̃ = D−
1
2LD−

1
2 . (4)

2.3 Theory

Our motivation for spectral clustering comes from some useful properties of L, some of which you may be
asked to prove at a later date.

1. For every f ∈ RN

fTLf =
1

2

N∑
i,j=1

wij(fi − fj)2.

2. L is symmetric positive semidefinite.

3. The smallest eigenvalue of L is λmin(L) = 0 with corresponding eigenvector 1N .

To prove the third statement above, we simply need to show that the proposed are a valid eigenvalue-
eigenvector pair, i.e., to show that L1N = 0. To see this, note that

L1N = D1N −W1N

=


d1 −

∑N
j=1 w1j

d2 −
∑N
j=1 w2j

...

dN −
∑N
j=1 wNj

 =


0
0
...
0

 .
So how do these help us perform clustering? Let A ⊂ {x1, . . . , xN}, e.g., let A be some points in a cluster.
Define the indicator vector of size N × 1 as

1 {A} =


f1
f2
...
fN

 (5)

where

fi =

{
1, xi ∈ A
0, xi 6∈ A

.

Now note that the nullspace of L is the span of all eigenvectors associated with the eigenvalue 0 (there may
be more than one!). We are now in a place to start understanding why the graph Laplacian is important.

Proposition 1. If the graph has connected components (clusters) A1, A2, . . . , AK , then the nullspace of L
has dimension K and is spanned by the vectors 1 {A1} ,1 {A2} , . . . ,1 {AK}.

Proof. Recall that the nullspace of L is N (L) =
{
f ∈ RN : Lf = 0

}
. It suffices to show that

• 1 {Ak} ∈ N (L) for each k = 1, . . . ,K

• f ∈ N (L) implies that f =
∑K
k=1 αk1 {Ak} for some α1, . . . , αK ∈ R.



Demo Spectral Clustering 4

First consider the case of K = 1. In this case, we know that 1N ∈ N (L) (since it corresponds to the zero
eigenvalue). To show the second property, take some f ∈ N (L). Then Lf = 0, so

0 = fTLf =
1

2

N∑
i,j=1

wij(fi − fj)2.

If xi and xj are adjacent, then wij > 0, which implies fi = fj . Since K = 1, all points are connected, which
implies that fi = fj for all i, j. Thus f is a multiple of 1N .

Now consider K > 1 and suppose that the data are arranged such that

L =


L1 0 . . . 0
0 L2 . . . 0

0 0
. . . 0

0 0 . . . LK

 .
Notice that Lk is the graph Laplacian on Ak so we can use the K = 1 case above to see that

• L1 {Ak} = 0 for each k

• If Lf = 0, then f is piecewise constant on Ak, i.e.,

f =

K∑
k=1

αk1 {Ak} .

To connect the above proposition with a clustering algorithm, consider the following corollary.

Corollary 1. If {u1, u2, . . . , uK} ⊂ RN is a basis for N (L) and

yi =


u1(i)
u2(i)
...

uK(i)

 ∈ RK

then yi = yj if and only if xi and xj are in the same connected component (cluster).

2.4 Algorithm

The above theory tells us that if our clusters all consist of points that are connected to each other (possibly
indirectly) and not connected to points in other clusters, then the transformed vectors y1, . . . , yN ∈ RK will
match exactly for points in the same cluster. In practice, we of course break these assumptions, but the
general principle works well as long as there are not too many false or missing connections. Our approach
is therefore to take the eigenvectors corresponding to the K smallest eigenvalues of L and work with those
as our “basis” for the nullspace. The spectral clustering algorithm that you need to code is given below in
Alg. 1.



Demo Spectral Clustering 5

Algorithm 1 Spectral Clustering

1: Input: Data points x1, . . . , xN ; number of clusters K
2: Output: Cluster assignment for each point
3: Construct similarity graph as described in Section 2.1
4: Construct the (possibly normalized) graph Laplacian as described in Section 2.2
5: Determine K smallest eigenvalues λ1, . . . , λK and corresponding eigenvectors u1, . . . , uK
6: Set yi = [u1(i), . . . , uK(i)]T for i = 1, . . . , N

7: Cluster {yi}Ni=1 using K-means

3 Tasks

• Open each of the provided files and have a look at what they do. In particular, syntheticTest creates
synthetic data lying on two concentric spheres that you will use to test your implementation of Spectral
Clustering. I have already created the similarity matrix for you, which you can view using imshow in
Python or imagesc in Matlab.

• Implement the Spectral Clustering algorithm with an option to use either the normalized or unnor-
malized Laplacian. See the file mySpectralClustering.

• Test your algorithm on synthetic data. Vary the parameter that controls the noise in the data, as well
as the parameters for forming the weighted adjacency matrix. See syntheticTest.

• Test your algorithm on the Iris dataset. Vary the parameter that controls the noise in the data, as
well as the parameters for forming the weighted adjacency matrix. See irisTest.

• If time permits, implement your own formation of a k-nearest neighbors (KNN) graph with the option
to set the number of neighbors, the weight type (constant or Gaussian), and the parameter σ for
Gaussian weights. See myKNN.m or helperFunctions.py for the included implementation.


	Introduction
	Spectral Clustering
	Similarity Graphs
	Graph Laplacians
	Theory
	Algorithm

	Tasks

